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In this article, the partially linear single-index models are discussed based on
smoothing spline and average derivative estimation method. This proposed technique
consists of two stages: one is to estimate the vector parameter in the linear part
using the smoothing cubic spline method, simultaneously, obtaining the estimator of
unknown single-index function; the other is to estimate the single-index coefficients
in the single-index part by the using average derivative estimator procedure. Some
simulated and real examples are presented to illustrate the performance of this
method.
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1. Introduction

The single-index model is an efficient tool in multivariate nonparametric
regression, which has the form

Y = �0��
T
0X�+ �� (1)

where �0�·� is an unknown univariable measurable function, �0 ∈ Rq is an unknown
parametric vector with ��0� = 1 for identifiability, X ∈ Rq, Y ∈ R and the error � is
independent of X with E��� = 0 and Var��� = �2. There are a number of articles
for the model (1), such as Härdle and Stoker (1989), Härdle et al. (1993), Li (1991),
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Ichimura (1993), and so on. The appeal of the model (1) is that by reducing the
dimensionality from multivariate predictors to an index �T0X, the so-called “curse
of dimensionality” is avoided and the important features are still captured in high-
dimensional data.

To capture more accurately the underlying relationship between the response
variable and the covariates, Carroll et al. (1997) proposed the partially linear
single-index model (PLSIM) by combining the single-index and linear regression
model, i.e.,

Y = �0��
T
0X�+ �T

0Z + �� (2)

where Z ∈ Rp is covariate; the unknown parameter �0 is in Rp; the error � is
independent of X and Z with E��� = 0 and Var��� = �2. Other quantities are
defined as in the model (1). Carroll et al. (1997) employed the local linear method to
obtain the quasi-likelihood estimators of the unknown parameters and the unknown
function in model (2) and gave their asymptotic distributions. More discussions can
be found in Yu and Ruppert (2002) and Xia and Härdle (2006). These articles use
local polynomial or penalized spline method.

In this article, we use smoothing spline to estimate the model (2) by combining
average derivative method. We first apply smoothing cubic spline method to
obtain the estimate of unknown smooth function �0�·� and get the estimate of
the vector parameter �0 simultaneously under given index parameter, then, use
average derivative estimator (ADE) technique by using the estimated function value
obtained previously to establish the estimate of the parameter vector �0 in the single-
index part. The estimation procedure is an iteration procedure.

The rest of the article is organized as follows. We give detailed estimation
procedure in Sec. 2, where details regarding to choosing smoothing parameters is
included as well. An optimal algorithm for these estimators is presented in Sec. 3.
Sec. 4 presents some simulated examples to reveal the performance of this estimation
procedure and the real data analysis is also included in this section. Some concluding
remarks are left in Sec. 5.

2. Estimation

2.1. Estimation of �0 and �0�·�
For any given �0, write U = �T0X, then the model (2) becomes

Y = �0�U�+ �T
0Z + �	 (3)

Model (3) is the partially linear model. We adopt a cubic spline and the penalized
least squares technique to estimate the function �0�·� and parameter �0. Suppose
that �0�·� is a cubic smoothing spline and has second derivative at every knot. In
our setting, all available data points of the covariate Ui are taken as the knots. We
can estimate the model (3) by minimizing

S��� �� =
n∑

i=1


Yi − ��Ui�− �TZi�
2 + �

∫
�′′�u��2 du	 (4)
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The idea of the above representation aries naturally, because it takes the goodness
of fit into account in the first term, and at the same time, the smoothness of resulting
curve also is included in the second part. The solution of (4) fairly balances the two
criterions and can be regarded as the compromise of the two considerations. For
computational simplicity, (4) can also be expressed as

S��� �� = �Y − Z� − ��T �Y − Z� − ��+ �
∫
�′′�u��2 du� (5)

where Y = �Y1� Y2� 	 	 	 � Yn�
T �Z = �Z1� Z2� 	 	 	 � Zn�

T , � = ��1� �2� 	 	 	 � �n�
T , and �i =

��Ui�. Firstly, we consider the second part of (5). As pointed out by Green and
Silverman (1994), the second term can be represented as �TK�. Here, K = QR−1QT .
Q�R are two band matrices which are defined in the following.

Suppose that these ascending Ui� i = 1� 2� 	 	 	 � n, are distinct knots, define hi =
Ui+1 − Ui� for i = 1� 	 	 	 � n− 1	 Q is defined as a n× �n− 2�matrix with elements qij
given by

qj−1�j = h−1
j−1� qj�j = −h−1

j−1 − h−1
j � and qj+1�j = h−1

j

for j = 2� 	 	 	 � n− 1, and qij = 0 for �i− j� ≥ 2, for i = 1� 	 	 	 � n and j = 2� 	 	 	 � n−
1. R is defined as a �n− 2�× �n− 2� symmetric matrix, the columns of which start
from 2 and so the top left element of it is r22. Its elements have the forms of

rii =
1
3
�hi−1 + hi� for i = 2� 	 	 	 � n− 1�

ri�i+1 = ri+1�i =
1
6
hi for i = 2� 	 	 	 � n− 2�

and ri�j = 0 for �i− j� ≥ 2.
Then we have

S��� �� = �Y − Z� − ��T �Y − Z� − ��+ ��TK�	 (6)

By deriving with respect to � and �, we get(
ZT

I

)
Y =

(
ZTZ ZT

Z I + �K

)(
�
�

)
	 (7)

Solve the linear matrix equation, then we have the estimation �̂0 and �̂0 of �0

and �0 at every knot, respectively. What we want to do next is to employ ADE
technique to estimate parameter �0.

2.2. Estimation of �0

Although the estimation of function �0�·� at every knot and parameter �0 are
obtained through the method described above under given the parameter �0. Next,
we are going to employ the average derivative estimator (ADE) approach to get
the estimator of �0. Replace �0 by its estimator �̂0, and write Ynew = Y − �̂T

0Z, then
model (2) can be rewrote asymptotically

Ynew
	= �0��

T
0X�+ �	 (8)
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Model (8) is considered as the single-index model and our next task is to get the
estimate �̂0 of �0 by use of average derivative estimate method.

Average derivative estimate method (ADE) was introduced in Stoker (1986)
and Powell et al. (1989). The idea of this method is to estimate the expected value
of the gradient ��/�x��0��

T
0 x� = �0�

′
0��

T
0 x� of the regression function �0�·�, which is

proportional to �0 (Hristache et al., 2001). So we only need to know the direction
of function ��0�·� in order to estimate the parameter �0. This method leads to the√
n-consistent estimator of the index vector. The idea above naturally leads to the

following representation:

�∗0 �= 1/n
n∑

j=1

��0��
T
0Xj�	 (9)

The main problem which arises when implementing this approach is that the
gradient function is not smooth and some rather restrictive assumptions on the
design and on the link function �0 must hold to make sure the desire

√
n-consistency

of the corresponding estimator (Härdle and Tsybakov, 1993; Samarov, 1993). So the
estimator �̂0 of �0 can be estimated naturally using the following expression:

�̂∗0 = 1/n
n∑

j=1

�̂�0��
T
0Xj� and �̂0 =

�̂∗0
��̂∗0�

	 (10)

Here, the �̂�0��
T
0Xj� is a consistent estimator of the gradient ��0��

T
0Xj�. We

introduce the estimation procedure given by Hristache et al. (2001). The local linear
method is employed to estimate ��0�·�. Suppose for a moment that we know �0 and
estimate ��0��

T
0Xj�. By using the local least algorithm

(
�̂0��

T
0Xj�

�̂�0��
T
0Xj�

)
= arg inf

c∈R��∈Rd

n∑
i=1

Ynew�i − c − �T �Xi − Xj��
2K

(
��T0 �Xi − Xj��2

�2

)
� (11)

where � · � is the Euclidean norm, � is a small positive value, K�·� is a kernel function
and supported on −1� 1�. The solution to the problem above is represented as

(
�̂0��

T
0Xj�

�̂�0��
T
0Xj�

)
=
{

n∑
i=1

(
1
Xij

)(
1
Xij

)T

K

(
��T0Xij�2

�2

)}−1
n∑

i=1

Ynew�i

(
1
Xij

)
K

(
��T0Xij�2

�2

)
	

(12)

Here, Xij = Xi − Xj . Then the estimator of ��0��
T
0Xj� can obtained. Since the

parameter �0 is unknown, the algorithm described above involves iterative
procedure. As pointed by Hristache et al. (2001), the algorithm reads as follows.

Step 1. Initialization: specify parameters h1 = n−1/�4∨q�� hmax = 1� ah =
e1/2�4∨q�� �1 = 1� �min = n−1/3� a� = e−1/6, k = 1, �̂�0�0 = 0.

Step 2. Compute Sk = �I + �−2
k �̂

�k−1�
0 �̂�

�k−1�
0 �T �1/2.

Step 3. For every j = 1� 	 	 	 � n, compute �̂�0���
�k�
0 �TXj� from the following

expression
( �̂0���

�k�
0 �T Xj�

�̂�0���
�k�
0 �T Xj�

) = {∑n
i=1

( 1
Xij

)( 1
Xij

)T
K
( �SkXij �2

h2k

)}−1∑n
i=1 Ynew�i

( 1
Xij

)
K
( �SkXij �2

h2k

)
.
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Step 4. Compute the vector �̂�k�0 = 1
n

n∑
j=1

�̂�0���
�k�
0 �TXj�.

Step 5. Set hk+1 = ahhk� �k+1 = a��k	 If �k+1 > �min, then set k = k+ 1 and
continue with step 1; otherwise terminate and let �̂∗0 = �̂

�k�
0 , �̂0 = �̂∗0/��̂∗0�.

In all, the target estimators can be established through the two-stage estimation
procedure stated previously, which employs both the cubic spline method and
average derivative method together. The next section will provide how to choose the
appropriate smoothing parameter �.

2.3. Choosing the Smoothing Parameter

The selection of the smoothing parameter is important in modeling. There are
mainly two views regarding to the choice of the smoothing parameter. One is based
on people’s experience that is free of the data and the other is chosen by the data
or namely data driven method. The first one in reality probably is the most useful.
The data-driven method includes cross-validation (CV), generalized cross-validation
(GCV), AIC, BIC, and so on. In the following, we will describe the CV approach in
general which is probably the oldest and widely used one in many literatures. The
general idea of it is to minimize some function concerning the smoothing parameter
with respect to this parameter to get the “idea” parameter value theoretically. For
the model (3), we minimize the following equation

CV��� = n−1
n∑

i=1


Yi − �̂0
�−i�

�Ui� ��− ���−i��TZi�
2 (13)

with respect to �. We choose the smoothing parameter � to be the minimizer of (13).
Here, �̂0

�−i�
�Ui� �� and ��−i� are the minimizer of

∑
j 	=i


Yj − ��Uj�− �TZj�
2 + �

∫
�′′�u��2du	

It cannot be guaranteed that the function CV��� has a unique minimum, so attention
should be paid on the uniqueness of the solution. It is suggested that a simple grid
search is probably the best approach in practice. The simulated examples in Sec. 4
adopt the simple grid search method when seeking the effective value of smoothing
parameter.

3. Estimation Procedure

In this section, we will illustrate how the estimate procedure presented previously
would be implemented in practice, and of all the difficulties one is the selection
of the initial value of the single-index parameter �0 for the estimation procedure.
Precisely, it is an iteration procedure. We randomly select �0 from the unit half-
sphere from Rd with the first non zero element positive. Here is the detailed
procedure.

Step 1. Randomly select the initial value of ��0�0 from the unit half-sphere from
Rd with first nonzero element positive.
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Step 2. Apply the cubic spline algorithm which has been described in Sec. 2 to
get the estimator �̂0 of �0.

Step 3. Make a simple transformation (8) and then employ the ADE technique
in Sec. 2.2 to obtain the �̂0

�1� for the first iteration.

Step 4. View the �̂0
�1� as the initial value of the second iteration and continue

from Step 2 until it converges.

Step 5. Obtain the estimator of �0: let m�n� be the total number of iterations.
Set �̂0 = �̂0

�m�n��
/��̂0�m�n���.

Step 6. Obtain the estimators of �0�·� and �0: replacing �0 by �̂0 in (7) and
resulting it, the estimators of �0�·� and �0 can be obtained.

4. Simulation and Real Example

4.1. Simulation Example

The model we want to analyze is the same as the one that appears in Yu and
Ruppert (2002). Data are generated from the model

Yi = sin

{
���TXi − A�

C − A

}
+ �Zi + �i	 (14)

Here, the Xi are trivariate with independent uniform (0,1) components, Zi = 0
for i odd and Zi = 1 for i even. A is taken to be A = √

3/2− 1	645/
√
12 and

C=√
3/2+ 1	645/

√
12 as did Carroll et al. (1997). We present the results for cases

where �0 = 1√
3
�1� 1� 1�, � = 0	3, � = 0	1, n = 100 and 200, respectively. For each

case with sample size of 100 or 200, we will simulate 200, 400, and 600 times
and provide corresponding figures and tables to illustrate the performance of our
proposed method. During the ADE procedure we take the kernel function to be
k�t� = 3

4 �1− t2�2+.
Table 1 presented below is the summary of estimated values of parameters for

different simulated times with sample size of 100. The means (Mean), standard
errors (SE), bias, and mean squared errors (MSE) of these estimators of the
parameters ��i�0 (the i-th entry of parameter �0), i = 1� 2� 3 and �0 are listed, Table 2
for sample size of 200. Figure 1 shows in a typical estimate of unknown function
�0�·� and its limits of the 95% confidence intervals: (a) for n = 100; (b) for n = 200.
The typical sample is selected in such a way that its MSE is equal to the median in
the 200 replications.

From Tables 1 and 2, we can see that these means of these estimators of these
parameters are very close those true values, respectively, and these standard errors,
bias, and mean squared errors of these estimators of the parameters are very small,
no matter for the sample size of 100 or 200, and no matter in 200 replications, or
in 400 replications, or in 600 replications. From Fig. 1 the estimate of the unknown
function �0�·� agrees with the true function very closely. In a word, our proposed
estimation procedure works well.
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Table 1
Summary of the estimated values of parameters for different

simulated times with the sample size of 100

Parameter Simulated times Mean SE Bias(10−3) MSE(10−3)

�
�1�
0 200 0.5726985 0.0486753 −4	851769 2.390924

400 0.5750721 0.05167847 −2	278120 2.675854
600 0.575258 0.05522577 −2	092252 3.054263

�
�2�
0 200 0.5788902 0.04812349 1	539934 2.318241

400 0.5752077 0.05075389 −2	142522 2.580548
600 0.5731454 0.01316511 −4	204869 2.215793

�
�3�
0 200 0.567978 0.08217174 −9	372222 6.840033

400 0.5734995 0.06548053 −3	850754 4.302529
600 0.5713011 0.008129085 −6	049206 6.644795

�0 200 0.2913312 0.035679996 −1	865432 5.234168
400 0.2966826 0.026547232 −1	221245 4.389936
600 0.3001698 0.006222996 2	0086643 3.312657

Table 2
Summary of the estimates of parameters for different

simulated times with the sample size of 200

Parameter Simulated times Mean SE Bias(10−3) MSE(10−3)

�
�1�
0 200 0.5741909 0.02387754 −3	199375 0.5803727

400 0.5789361 0.02540472 1	585842 0.6479149
600 0.5779919 0.02347418 0	6416725 0.5514488

�
�2�
0 200 0.5777333 0.02501009 0	3830533 0.6256514

400 0.574365 0.02414208 −2	485251 0.5917516
600 0.5764323 0.02413244 −0	9179995 0.5832174

�
�3�
0 200 0.5786073 0.02453342 1	257038 0.6034691

400 0.5772789 0.02161280 −0	07136874 0.4671184
600 0.5761418 0.02407984 −1	208506 0.581299

�0 200 0.2934423 0.03005678 −1	331233 5.112311
400 0.2956342 0.01965788 −1	004568 4.008679
600 0.3000896 0.00321675 2	0095467 3.012386

5. Real Data–Air Pollution Data

The air pollution data are concerned with environment study of how the
concentration y of the air pollutant ozone relates with three meteorological
variables X: wind speed, x1; temperature, x2; and radiation, x3. The data are
daily measurements of the four variables for n = 111 days. Yu and Ruppert
(2002) employed a partially linear single-index model using a P-splines in which
temperature and wind are the two components of the index and radiation is the
linear term to analyze the data. To see the performance of our proposed method, we
also deal with the data and compare our results with that in Yu and Ruppert (2002).
Similar to Yu and Ruppert (2002), we also let x1� x2 be treated as components
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Figure 1. Simulation results: (a) the estimate (dot-line) of the unknown function �0�·�
(solid-line) and its limits of the 95% confidence bands (dash lines) in the 200 replications for
sample size of 100; (b) for sample size of 200.

Figure 2. Curve estimates for air pollution data. The data are represented by open circles,
and the solid curve corresponds to the estimate of the single index function �0�·� of the
partially linear single-index model by our method.

Table 3
Summary of two fits for air pollution data

Parameter

Method Temperature Wind Radiation

Method 1 0.5288 −0	8569 0.0021
SE 0.0002 0	0001 0.00001
Method 2 0.5224 −0	8527 0.0024
SE 0.0005 0	0003 0.00005
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of single-index part and x3 the liner term in a partially linear single-index model.
Figure 2 shows the singe index curve estimates �̂0 of the air pollution data. Table 3
gives the fitting results (parameter estimates, standard errors (SE)) by our method
(Method 1) and by Yu and Ruppert (2002) (Method 2).

We conclude from Table 3 that our method is better than that by Yu and
Ruppert (2002), since every SE of estimator of every parameter obtained is less than
that by Yu and Ruppert (2002).
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