
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
https://doi.org/10.1080/00949655.2019.1572756

The nested joint clustering via Dirichlet process mixture
model

Shengtong Hana, Hongmei Zhangb, Wenhui Shengc and Hasan Arshadd

aJoseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA; bSchool of Public
Health, University of Memphis, Memphis, TN, USA; cDepartment of Mathematics, Statistics and Computer
Science, Marquette University, Milwaukee, WI, USA; dAllergy and Clinical Immunology, Clinical and
Experimental Sciences, University of Southampton, Southampton, UK

ABSTRACT
This article focuses on the clustering problem based on Dirichlet
process (DP) mixtures. To model both time invariant and temporal
patterns, different from other existing clustering methods, the pro-
posed semi-parametric model is flexible in that both the common
and unique patterns are taken into account simultaneously. Further-
more, by jointly clustering subjects and the associated variables,
the intrinsic complex shared patterns among subjects and among
variables are expected to be captured. The number of clusters and
cluster assignments are directly inferred with the use of DP. Simula-
tion studies illustrate the effectiveness of the proposed method. An
application to wheal size data is discussed with an aim of identifying
novel temporal patterns among allergens within subject clusters.
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1. Introduction

In this paper, motivated by an epidemiological study we examine different allergic sen-
sitization temporal patterns among subjects with different asthma statuses. Of interest
is whether allergic sensitization to a set of indoor and outdoor allergens changes across
different time points from infant to pre-adolescence, and to young adulthood, and if it
does, then whether there exist systematic temporal patterns for different groups of sub-
jects and for different groups of allergens. Compared to cross-sectional data, longitudinal
data like this contains in depth information and provides us a unique opportunity to
detect effective biomarkers for disease manifestations. For applications like this, cluster
analyses aiming to detect the similarity between subjects are commonly implemented. In
general, all clustering methods are either non-parametric, e.g., the k-means approach, or
model-based (semi-)parametric approaches [5]. In this article, we focus on model-based
semi-parametric clustering methods in the Bayesian framework.

Manymodel-based clusteringmethods group subjects based on themeans, for instance,
the method built upon amixture of density functions [5,17]. Some approaches cluster sub-
jects based on associations of a dependent variable with independent variables [10]. The
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clustering process is to identify groups of subjects with each group (cluster) representing
a unique association and such association can be longitudinal [10]. Model-based cluster-
ing methods have also been proposed to cluster variables, which are beneficial to studies
with interest on grouped patterns of variables, e.g., different temporal expression patterns
for genes in different pathways. One such a method is proposed by Qin and Self [15], in
which a maximum likelihood-based approach via an estimation-maximization algorithm
is applied to infer variable clusters and regression coefficients. However, all these methods
either cluster subjects or variables but not both.

Biclustering is more recognized recently with its concept dated back to the 1970’s [11].
The biclustering scheme simultaneously clusters both subjects and variables and tries to
optimize a pre-specified objective function. There are two main classes of biclustering
algorithms: systematic search algorithms and stochastic search algorithms [6]. Some of
the methods are proposed under the Bayesian framework, e.g., the parametric Bayesian
BiClustering model (BBC) [9] performing clustering for both genes and experimental
conditions and the non-parametric Bayesian methods [12,13]. Biclustering focuses on
coherence of rows and columns in the data. Since the technique is not model-based, it
is restricted to profiles in the variables and external variables do not have any contribution
to the evaluation of similarity between different variables. Furthermore, in variable clus-
tering, it seems no methods available to handle variables with longitudinal measurements,
as in the data motivating our study.

In this article, we propose a Bayesian nested joint clustering method to identify joint
clusters based on temporal trends of a set of variableswith backgroundpattern adjusted. An
underlying background pattern refers to a pattern shared by all subjects and variables. For
instance, in our motivating example, the background pattern refers to a temporal allergic
sensitization trend in the general population across all allergens. Subjects and variables
with a pattern different from the background pattern will be included in a unique cluster.
The proposed approach is a substantial extension to the method by Han et al. [10], where
the focus is on clustering subjects only via longitudinal patterns of a variable of interest.

The road map for the remaining of the article is as follows. In Section 2, we present
model specification, including model assumptions, parameter priors and posteriors.
Numeric studies are in Section 3 and we present an application example in Section 4.
Finally, a summary and discussion are included in Section 5.

2. Model Specification

2.1. Model

Suppose there are I subjects, and each subject is associated with H variables, measured
at T time points. Let Y i, a T × H matrix, denotes a measure of response for subject i with
Y i = (Y i1, . . . ,Y iH),Y ih = (yih1, . . . , yihT)T , h = 1, . . . ,H, aT × 1 vector being the obser-
vation of hth variable for subject i over T time units and Y = {Y1, . . . ,Y I} denoting all the
observations. Clearly, each subject i has a data matrix Y i of the dimension T × H.

We assume that Y ih is associated with time invariant covariates Xi, a T × Cmatrix with
C being the number of covariates via the following function,

Y ih = Xiβ0 + f1(ti; γ 0, b0) + Xiβ ih + f2(ti; γ ih, bih) + si + ϵih, (1)
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where f1(·) is an unknown function describing the temporal pattern applicable to all sub-
jects (background pattern) and all variables, f2(·) is for temporal pattern specific to subject
i for variable h (with background adjusted), si represents subject random effects, and ϵih
is measurement error. Model (1) is for subject i and variable h and is in the same spirit
as in Han et al. [10]. We assume independence among variables Y i and also between
random noise and independent variables. Model (1) consists of two parts. The first part
Xiβ0 + f1(ti; γ 0, b0) describes background pattern common to all subjects and variables,
and Xiβ ih + f2(ti; γ ih, bih) describes the pattern specifically for subject i and variable h.
Assuming ϵih ∼ N(0, τ I) and si ∼ N(0, σ 2

s I) with I being the identity matrix, we have

Y ih|θ0, θ i ∼ N(Mih,%), (2)

withMih = Xiβ0 + f1(ti; γ 0, b0) + Xiβ ih + f2(ti; γ ih, bih), aT × 1 vector,% being aT × T
matrix with σ 2

s + τ on the diagonal and σ 2
s off diagonal, θ0 = (β0, γ 0, b0)T denoting com-

mon parameters in the background, θ ih = (β ih, γ ih, bih)T being the collection of parame-
ters unique (unique parameters) to subject i and variable h, i = 1, 2, . . . , I; h = 1, 2, . . . ,H.
As seen in the construction of (1), θ ih is added onto θ0 and θ ih = 0 if subject i in variable
h does not have a unique temporal trend.

We take Bayesian P-splines [2]with order l(l = 2) for functions f1(·) and f2(·) to estimate
the unknown common and subject specific temporal trends. Specifically, we define

f1(ti, γ 0, b0) = γ00 + γ01til + γ02t2il +
N∑

j=1
b0j(til − t∗ij)

2
+,

f2(ti, γ ih, bih) = γih0 + γih1til + γih2t2il +
N∑

j=1
bihj(til − t∗ij)

2
+, (3)

where (x)2+ = x2I(x ≥ 0) and N is the number of knots.

2.2. Nested joint clustering Scheme

We are interested in detecting two features, features in subjects indexed by i and features in
variables indexed with h, represented by θ ih in (4). To reach the goal, we propose a nested
joint clustering plan with variable clusters nested in subject clusters. The clustering pro-
cess is unified, but to ease the understanding, we present the process in two steps: subject
clustering and nested variable clustering.

To cluster subjects, we group θ1·, . . . , θ I· (each of the H variables in θ i· has repeated
measures) based on the overall pattern in the H variables. Next the clustering will be per-
formed on the variables within each identified subject cluster, i.e., clustering θ ·1, . . . , θ ·H .
Under this context, variable clustering is nested in subject clustering. By performing the
nested joint clustering, we are able to capture overall subject cluster trends and variable
heterogeneity (distinct variable clusters) in each subject cluster.

⎛

⎜⎝
θ11 · · · θ1H
... . . . ...

θ I1 · · · θ IH

⎞

⎟⎠! (θ1·, . . . , θ i·, . . . , θ I·)(features in subjects)
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! (θ ·1, . . . , θ ·h, . . . , θ ·H)(features in variables

within subject cluster) (4)

2.3. Parameter Priors

A fully Bayesian approach is used to infer the parameters and clusters. We start from the
construction for the prior of θ ih, then discuss prior distributions of θ i· and θ ·h. For subject
i with a background pattern for variable h, θ ih = 0 , otherwise, the subject has a unique
pattern different from that in the background for that variable. To incorporate both unique
and background patterns into the construction of prior distribution of θ ih, we use amixture
of distribution G and point mass δ(θ ih = 0),

θ ih|G,ω ∼ ωG + (1 − ω)δ(θ ih = 0),

with G generated from a Dirichlet Process (DP), G ∼ DP(α,G0), where G0 is the base dis-
tribution and assumed to be G0 = N(µ0,%0). Parameter α in G is a precision parameter
that controls the distance between G and G0. Details of DP can be found in [1,3,4], among
others. We assume %0 is a diagonal matrix composed of variance parameters correspond-
ing to β ih, γ ih, and bih in θ ih (Section 2.1). Parameterω is the probability that subject iwith
variable h has a unique longitudinal trend different from the background.

To fit in the nested joint clustering scheme proposed in Section 2.2, in the following, we
discuss the prior distributions of θ i· and θ ·h, along with other hyper-prior distributions.

2.3.1. Subject clustering
The parameters to be clustered to form subject clusters are θ i·’s. When clustering subjects,
we focus on overall longitudinal patterns across all the variables and group subjects into
clusters based on unique temporal patterns. For a subject with a background pattern only,
i.e., the longitudinal pattern across all the H variables for that subject follows the pattern
in the general population, we have θ i· = 0 . Based on the prior distribution of θ ih, we have,

θ i·|G,ω1 ∼ ω

H∏

h=1
G + (1 − ω)δ(θ i· = 0).

HavingG generated fromDP equippedG an ability to describe skewed distributions. Since
our goal is to assess overall patterns across all H variables, flexibility of G is essential. Fur-
thermore, the inherent clustering property of samples drawn from a distribution with DP
prior ensures the formation of clusters among θ i·. Thus, using DP as part of the mixture is
critical for the process of clustering subjects. The conditional prior distribution for θ i· with
(·) denoting all other parameters and data is then defined as,

θ i·|(·) ∼ ω

H∏

h=1

⎛

⎝ 1
I − 1 + α

∑

j ̸=i
δ(θ j·) + α

I − 1 + α
N(µ0,%0)

⎞

⎠

+ (1 − ω1)δ(θ i· = 0), (5)
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which assumes that subjects not following the temporal trend in a general population
(determined by θ0) are grouped into clusters with each cluster having one unique tem-
poral pattern on average across all H variables. Parameter α in G controls cluster sizes. A
larger value of α leads to a larger number of clusters. Since we do not expect many levels
of discrepancy among subjects with respect to overall longitudinal patterns for theH vari-
ables, the value of α is chosen to be relatively small, e.g., α = 0.01, although we can choose
α by optimizing the deviance information criterion (DIC) [7,16].

2.3.2. Nested variable clustering
To cluster variables within each subject cluster, θ ·h is used. Note that conditional on T
time units, the distribution of Y ih is exchangeable with respect to i and h. This property of
exchangeability eases the difficulty of clustering the H variables within each subject clus-
ter and makes it comparable to the process of clustering subjects. To achieve this, we treat
measures on H variables as observations on H “subjects” and, each having Ik (number of
subjects in kth subject cluster, k = 1, . . . ,K) “variables” and each “variable” has T repeated
measures.With this “modified” structure of data, for θ ·h within each subject cluster, we fur-
ther examine their heterogeneity. In this sense, the prior distribution of θ ·h is conditional
on all other parameters as well as the clustering of θ i·,

θ i·|θ i·, (·) ∼ ω

Ik∏

i=1

⎛

⎝ 1
I − 1 + α

∑

g ̸=h
δ(θ ·g) + ω

α

I − 1 + α
N(µ0,%0)

⎞

⎠

+ (1 − ω)δ(θ ·h = 0). (6)

It is worth noting that in expressions (5) and (6), we assume the probability that subject i
has a unique overall longitudinal trend across the H variables is the same as that for the
pattern of variable h being in the background across all Ik subjects. This assumption is
acceptable in that in both situations we are interested in the probability that a longitudinal
trend is coincident with a pattern in the background.

2.4. Prior distributions for other parameters

For the hyper-prior distributions of µ0 and %0 in the base distribution G0, and the dis-
tribution of weight parameter ω, we propose vague or non-informative priors. For µ0, we
choose a multivariate normal distribution with mean 0 and known large diagonal covari-
ance matrix %µ0 . For all the parameters in %0, we take inverse gamma (IG) as the prior
distributions with shape and scale parameters are known and chosen small. For the weight
parameter ω, we assume ω ∼ Beta(2, 2), which is a symmetric distribution within interval
(0,1). For the prior distributions of θ0, a multivariate normal is chosen with mean 0 and
covariance%θ0 , a known diagonalmatrix with large components. For variance parameter τ

in ϵih and variance parameter σ 2
s in random subject effects, an inverse gamma distribution

with small shape and scale parameters are used.

2.5. Joint and conditional posterior distributions

Let A = {θ ih, i = 1, . . . , I, h = 1, . . . ,H, ζ }, where ζ = (µ0,%0,ω, θ0, τ , σ 2
s ), denote all

parameters, the joint posterior distribution is, up to a normalization
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constant,

P(A |Y) ∝
∏

i

∏

h
p(Y|θ ih, θ0, τ , σ 2

s )p(θ i., θ .h|G,ω)p(G|G0,α)

p(µ0)p(%0)p(ω)p(θ0)p(τ )p(σ 2
s ),

with G0 = N(µ0,%0). (7)

Note that the joint posterior distribution reduced to the distribution in Han et al. [10] if we
only have one variable, and nested joint clustering becomes clustering subjects only. Poste-
rior inference ofA is obtained by successively simulating values from their full conditional
posterior distributions through the Gibbs sampling scheme. We included the conditional
posterior distributions as well as the sampling scheme in the Appendix. Derivations of
these distribution are similar in spirit to those given in Han et al. [10].

3. Simulated Experiments

For methods clustering subjects based on longitudinal patterns with background patterns
adjusted, Han et al. [10] via simulations compared with a non-parametric approach imple-
mented in an R package kml [8], and demonstrated the advantage of their proposed
method. The proposed method performs joint clustering and reduces to [10] when there
is one variable. We expect that the advantage of adjusting background while clustering still
holds. As for methods with the ability of jointly clustering subjects and variables under a
longitudinal setting, we have not identified comparablemethods. To demonstrate the effec-
tiveness of themethod, we thus implemented simulated data sets generated under different
scenarios. Different sample sizes and different number of variables are considered.We take
sample size I=200,400,600 and number of variables H=10,20. The background pattern
is assumed to be linear as

f1 = p0 + p1t

where p0, and p1 are generated from N(0, 0.1). The number of subjects with background
only is I/2. Two subject clusters are considered and each subject cluster is with size of I/4.
Within each subject cluster, variables are further grouped into two clusters. Thus in total,
we have four clusters. The patterns of these four distinct variable clusters are

clust11 : f2 = 7 − 23t

clust12 : f2 = 2

clust21 : f2 = −3

clust22 : f2 = −27 + 3t − 6t2,

where clust11 denotes the first variable cluster in subject cluster 1.We consider one covari-
ate, Xi ∼ N(0, 1), and coefficient for Xi in the background is β0 = 20. The coefficient of Xi
for each subject cluster is generated from N(0, 10), which is shared for all subject in this
cluster, i.e. subject cluster specific. Random subject effect si, and random error ϵih are both
generated from N(0, 0.5) and they are independent of each other.

For each setting in terms of sample size and the number of variables, we generated
100 Monte Carlo (MC) replicates. We then applied our method to each MC replicate. The
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Figure 1. Trace plots of one chain of MCMC simulations for the two scale parameters, τ (left) and σ 2
s

(right). The x-axis represents the number of iterations and values on the y-axis are the sampled values of
each parameter in the MCMC simulation process.

Figure 2. True curve (solid lines), fitted curve (dashed lines) and confidence bands (dotted lines) with
sample size of 600 and 20 variables.

precision parameter α is set at 0.01. Fast convergence of MCMC chains are observed. In
general, the chains converge within the first 500 iterations (Figure 1), after which the chains
become very stable and the sampled values are around the true values. We also calculated
the potential scale reduction statistics R̂ suggested by [7], which supports the fast conver-
gence observed in Figure 1. In particular, for τ , σ 2

S , Rτ = 1.0018,Rσ 2
S

= 1.0017 calculated
based on multiple MCMC chains, are both close to 1, indicating potential convergence of
the sampling sequences.

Figure 2 demonstrates the fit of the model to the data. The true patterns, fitted curves,
and 95% empirical bands are displayed for data set with the sample size of 600 and 20 vari-
ables. The fitted curves are closer to the true patterns and confidence bands are narrower
in the background than in other unique clusters. This is likely due to the larger sample size
as well as the larger number of variables in the background. Similar results are observed in
other settings of sample size and number of variables.
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Table 1. Summary of sensitivity and specificity across 100 MC replicates for both subject
clusters and variable clusters with varying subject sample sizes. The number of variables is
10. Background: backgroundpatterns applied to all subjects andvariables. sub.clust1: subject
cluster 1, sub.clust2: subject cluster 2, clustij: variable cluster j in subject cluster i, i, j = 1, 2.

Subject Sample Size
200 400 600

Background Sensitivity Mean 0.9539 0.9775 0.9898
SD 0.0990 0.0617 0.0375

Specificity Mean 0.9870 0.9891 0.9930
SD 0.0556 0.0370 0.0180

sub.clust1 Sensitivity Mean 0.7494 0.8631 0.9161
SD 0.2760 0.2315 0.1912

Specificity Mean 0.9539 0.9659 0.9731
SD 0.0648 0.0512 0.0437

sub.clust2 Sensitivity Mean 0.7761 0.8730 0.9089
SD 0.2331 0.2017 0.1702

Specificity Mean 0.9753 0.9816 0.9916
SD 0.0582 0.0411 0.0217

clust11 Sensitivity Mean 0.6904 0.7168 0.7407
SD 0.2472 0.2447 0.2445

Specificity Mean 0.6250 0.6225 0.7004
SD 0.3339 0.2742 0.2244

clust12 Sensitivity Mean 0.6738 0.7071 0.7218
SD 0.2103 0.2061 0.2123

Specificity Mean 0.7640 0.7658 0.7531
SD 0.3254 0.2347 0.2617

clust21 Sensitivity Mean 0.6992 0.6787 0.6699
SD 0.2333 0.2339 0.2458

Specificity Mean 0.6711 0.6596 0.6771
SD 0.2789 0.2943 0.2911

clust22 Sensitivity Mean 0.6718 0.6690 0.6800
SD 0.2117 0.2105 0.1956

Specificity Mean 0.7060 0.7212 0.7834
SD 0.3035 0.2886 0.2584

To assess the overall performance of the method, we present the clustering sensitivity
and specificity in different scenarios in Tables 1 and 2. Sensitivity and specificity in back-
ground are expectedly higher than in unique clusters because of the larger sample size.
Overall sensitivity and specificity for subject clusters are clearly increased as the sample
size increases. When the number of variables is increased from 10 to 20, both sensitivity
and specificity in unique clusters are improved, indicating stronger underlying clustering
information as the number of variables increases.

Results displayed in Tables 1 and 2 are for variable clusters such that the number of vari-
ables in each variable cluster is the same.We also considered unevenly distributed variables
in each variable cluster. To demonstrate the performance of the method under this set-
ting, we simulated 100 MC replicates such that variables in subject cluster 1 are unequally
split into two variables clusters, with one cluster of 8 variables and the other of 12. The
sample size is set at I=600. Other settings are the same as before. Results of summary
statistics for sensitivity and specificity are included in Table 3. As expected, the overall clus-
tering accuracy is slightly reduced compared to balanced cases. This is due to the stronger
uncertainty in the smaller variable clusters. Overall, results from the simulations provide
an evidence that the proposed method is capable of jointly clustering both subjects and
variables.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 9

Table 2. Summary of sensitivity and specificity across 100 MC replicates for both subjects
clusters and variable clusters with varying subject sample sizes. The number of variables is
20. Background: backgroundpatterns applied to all subjects andvariables. sub.clust1: subject
cluster 1, sub.clust2: subject cluster 2, clustij: variable cluster j in subject cluster i, i, j = 1, 2.

Subject Sample Size
200 400 600

Background Sensitivity Mean 0.9763 0.9848 0.9916
SD 0.0658 0.0483 0.0433

Specificity Mean 0.9891 0.9943 0.9902
SD 0.0265 0.0130 0.0397

sub.clust1 Sensitivity Mean 0.8005 0.8579 0.9217
SD 0.2652 0.2383 0.1874

Specificity Mean 0.9575 0.9659 0.9745
SD 0.0663 0.0559 0.0423

sub.clust2 Sensitivity Mean 0.8134 0.8825 0.9318
SD 0.2260 0.1924 0.1557

Specificity Mean 0.9810 0.9817 0.9911
SD 0.0669 0.0350 0.0211

clust11 Sensitivity Mean 0.8028 0.8351 0.8567
SD 0.2504 0.2323 0.2264

Specificity Mean 0.6612 0.7464 0.7087
SD 0.2787 0.2356 0.2273

clust12 Sensitivity Mean 0.8072 0.8092 0.8271
SD 0.1878 0.2051 0.1890

Specificity Mean 0.8654 0.8424 0.8725
SD 0.2057 0.2209 0.1800

clust21 Sensitivity Mean 0.8064 0.7865 0.8598
SD 0.2438 0.2502 0.2153

Specificity Mean 0.7417 0.6572 0.7422
SD 0.2733 0.2750 0.1658

clust22 Sensitivity Mean 0.7745 0.7697 0.8169
SD 0.2195 0.2075 0.1953

Specificity Mean 0.8518 0.8143 0.8366
SD 0.2588 0.2310 0.1904

Table 3. Sample size 600, 20 variables: Unevenly distributed variables, in
subject clust1, there are 8, 12 variables in variable cluster 1, and 2 respec-
tively, and in subject cluster 2, there are 10, 10 variables in variable cluster 1
and 2 respectively. Background: background patterns applied to all subjects
and variables. sub.clust1: subject cluster 1, sub.clust2: subject cluster 2, clustij:
variable cluster j in subject cluster i, i,j= 1,2.

Mean (SD)

Sensitivity Specificity

Background 0.9785 (0.0537) 0.9883 (0.0301)
sub.clust1 0.9143 (0.1995) 0.9530 (0.0641)
sub.clust2 0.9278 (0.1556) 0.9808 (0.0382)
clust11 0.7961 (0.2476) 0.8039 (0.1566)
clust12 0.8672 (0.1565 ) 0.7409 (0.2130)
clust21 0.8335 (0.2360) 0.6571 (0.2422)
clust22 0.7393 (0.1607) 0.8433 (0.2211)

4. Real data applications

We apply the proposed method to an epidemiology data collected from 595 subjects, each
having wheal sizes measured at ages 4, 10, and 18 years in reaction to 11 allergens (Grass,
Dog, Cat, House dust mite [HDM], peanut, soy, cod, egg, milk,Alternaria, Cladosporium).
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Our goal is to detect clusters of subjects sharing similar overall temporal wheal size patterns
across the allergens, andwithin each subject cluster, wewould like to detect clusters of aller-
gens sharing similar temporal patterns. The underlying motivation is that some subjects
may react to certain allergens different from other subjects.

Without loss of generality, we standardized the age variable before analyzing to avoid
potential bias in clustering caused by heterogeneous scale.

We set α as 0.01, assuming small numbers of clusters in subjects as well as variables. We
run one long chain with 10,000 iterations in total, among which 8,000 iterations are for
burn in, and the posterior inferences are based on the remaining 2,000 iterations.

On top of background patterns (i.e., patterns in the general population), three unique
subject clusters are identified, inwhich unique variable clusters with respect to longitudinal
wheal size patterns are further detected. As shown in Figure 3, the wheal sizes in the gen-
eral population are overall close to zero. Wheal size longitudinal patterns with respect to
allergens soy, cod, egg,milk,Alternaria, andCladosporium are in the background, implying
an extremely low prevalence of allergic sensitization to these allergens. Wheal sizes in the
unique clusters are clearly much larger, but show different temporal patterns in different
clusters of allergens. In the first subject cluster (Figure 4), the unique patterns are brought

Figure 3. Background pattern.

Figure 4. Pattern of allergen variables in subjects cluster 1 which has 43 subjects. Variable cluster 11:
Grass, Dog; Variable cluster 12: Cat; Variable cluster 13: HDM.
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by allergens Grass, Dog, Cat, and House dust mite and the pattern of the remaining 7 aller-
gens are constant with patterns in general population. In particular, wheal sizes against Cat
allergen are smaller and increasemore slowly over time compared to thewheal sizes against
the other three allergens. Among Grass, Dog, and HDM, wheal sizes in reaction to Grass
and Dog follow similar temporal trend, increasing over time and increasing faster com-
pared to the trend forHDM. In subject cluster 2 (Figure 5), compared to allergens in unique
clusters of subject cluster 1, Peanut allergen joins in. For subjects in this cluster, wheal sizes
for allergens Grass, Dog, HDM, and Peanut increases quickly over time to an expected
wheal size larger than 3.5mm. On the other hand, wheal sizes in reaction to Cat for sub-
jects in this cluster aremuch smaller.Wheal sizes are small at an earlier age (around 4 years,
unstandardized age) and start to increase around 10 years of age. In the last subject cluster
(Figure 6), wheal sizes for all the allergens except for HDM andMilk follow a pattern as in
the background.Wheal sizes for HDM andMilk are small in expectation and share similar
patterns.

Because sizes of wheals reflect a potential severity of allergic sensitization (atopy) and
atopy is linked to asthma, we further examined whether subjects in each of the clusters
ever had asthma. The prevalence of asthma ever in each unique subject cluster and among
the subjects with a background pattern is recorded in Table 4. Linking the prevalence of
asthma to the longitudinal patterns in each unique cluster, subjects with larger wheal sizes
increasing over time certainly have a higher risk of having asthma compared to those in
the background. However, two points may deserve a further consideration. Firstly, among
subjects allergic to the four allergens, Grass, Dog, Cat, and HDM, wheal size in reaction to
Cat allergen seems to play a role in the prevalence of asthma. If wheal sizes for Cat allergen
are relatively small compared to reaction to the other three allergens, even though a subject
is allergic to peanut as well, the risk of having asthma can be smaller compared to subjects
with large wheal sizes for Cat allergen (cluster 1 and 2 in Table 4). Secondly, there exists a
group of subjects such that they have a slight reaction to a small number of allergens, in
our case, HDM and Milk. For those subjects, the prevalence of asthma (13.6%) is slightly

Figure 5. Pattern of allergen variables in subject cluster 2 with 84 subjects. Variable cluster 21: peanut,
Grass, Dog, HDM; Variable cluster 22: Cat.
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Figure 6. Pattern of allergen variables in subject cluster 3 with 31 subjects. Variable cluster 31: milk,
HDM.

Table 4. Asthmaprevalence in each subject cluster and background.

Unique Subject Cluster/Background Size % asthma

Cluster 1 43 29.4
Cluster 2 84 22.2
Cluster 3 31 13.6
Background 437 16.4

lower but similar to that in the general population (16.4%). It is unclear whether a small
reaction to a small number of allergens is actually protective and surely deserves further
investigation.

5. Summary

We proposed a nested joint clustering method built upon Dirichlet process to jointly clus-
ter longitudinal data. Under the proposed mechanism, variables are clustered within each
subject cluster based on their agreement in possibly non-linear temporal trends and asso-
ciations with external variables. Dirichlet process (DP) is implemented in the clustering of
subjects as well as in the jointed clustering of variables nested within each subject cluster.

To our knowledge, methods with the ability to jointly cluster longitudinal data are not
available. In the absence of competitive methods, we evaluated the proposed methods via
simulations under different settings defined by sample sizes and numbers of variables.
Results from simulations demonstrate the effectiveness of the proposed approach with
respect to sensitivity and specificity in clustering. As expected, sensitivities and specificities
improve with the increase of sample sizes andwith the increase of number of variables. The
application of the method to the longitudinal wheal size assessment of children at ages 4,
10, and 18 years detected 6 unique clusters with each showing a different temporal pattern
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of wheal size for different groups of allergens and subjects. After connecting the features
of the unique clusters to the proportions of ever having asthma among the children, it
was found that being allergic to Cat allergen (but not other allergens) in addition to other
common allergens (Dog, Grass, and House dust mite) can potentially increase the risk of
asthma.

Common to all analyticalmethods, the proposed nested joint clustering approach has its
limitations. The sensitivity and specificity of variable clusters require improvement when
the number of variables is small. This is likely due to the characteristics of DP, e.g., produc-
ing clusters with a small number of observations. Another limitation is in the assumption
of independence between variables. With variables being dependent, the likelihood con-
structed under the independence assumption can be treated as a composite likelihood.
Since the goal is clustering, we do not expect this assumption will deteriorate the ability
of cluster detections; rather, the dependency among the variables is expected to have the
underlying variable clusters emerge more easily, and subsequently benefit the clustering
and improve the quality of clustering.
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Appendix
In the following, we present the conditional posterior distributions, followed by the sampling scheme
used to draw posterior samples for posterior inferences.

A.1 Derivations of conditional posterior probabilities for key parameters
We present below conditional posterior distributions for two key parameters θ 0 , θ i· in the step of
clustering subjects and omit the posterior distributions for parameters θ ·h for clustering variables
as its posterior can be derived in the same way as θ i·. Analogously, µ0,%0 have standard posteriors
with similar derivations as for θ 0 . However, for τ , σ 2

s , we use M-H sampling to draw samples based
on the joint posterior probabilities in (7).

(1) Conditional posterior of θ 0 ,

P(θ 0 |Y , θ ih, i = 1, 2, . . . , I, h = 1, . . . ,H; ζ \ θ 0 )

∝ exp
{
−1
2
(θ 0 )

T(%θ 0 )
−1θ 0

}
× exp

{

−1
2

I∑

i=1

H∑

h=1
(Yih − Mih)

T(%)−1(Yih − Mih)

}

where θ 0 = (β 0 , γ 0 , b0 ). Because %θ 0 is a diagonal matrix, let %θ 0 = diag{%β0 ,%γ 0 ,%b0 },
Rih(β 0 ) = Yih − f (ti; γ 0 , b0) − Xiβ ih − f (ti; γ ih, bih), which does not involve β0 any more.
The conditional posterior of β0 is proportional to

exp
{
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−1β0

}
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.
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Analogously, the posterior probability of γ 0 is proportional to

exp

{

−1
2
(γ 0 )
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−1γ 0 − 1

2
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]}

where ⊗ is the outer product, Rih(γ 0 ) = Yih − Xiβ0 − (bT0 ▽T(i)
1∗, . . . , b

T
0 ▽T(i)

T∗)
T − Xiβ ih −

f (ti; γ ih, bih),Ti = (Ti1, . . . ,TiT)T , ▽T(i)
l∗ = ((til − t∗i1)2+, . . . , (til − t∗iN)2+), l = 1, 2, . . . ,T.

After simplifications,
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Similarly,
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where R(∗)k is the kth element of the “residual” of ∗.
(2) Conditional posterior of θ i·,

Following the same way, it is straightforward to derive the conditional posterior for θ i·. As for
β i,

β i|(.) ∼ MN(µ,'), with

µ = '

[

(%β i)
−1µβ i

+
I∑

i=1

H∑

h=1
XT
i (%)−1Rih(β i)

]

,

' =
[

%β i)
−1 + H

I∑

i=1
XT
i (%)−1Xi

]−1

,



16 S. HAN ET AL.

where Rih(β i) = Yih − Xiβ 0 − f (ti; γ 0 , b0) − f (ti; γ i, bi).
For γ i,

γis|(.) ∼ N(µ,+),with
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Finally, for bi,

bis|(.) ∼ N(µ,+),with
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A.2 Overall sampling procedure
In this section, we present details about how the overall sampling procedure proceeds and we use
algorithm 8 in [14] to sample unique parameters. At every full iteration, we start from clustering
subjects. Suppose currently we have k subject clusters for all I subjects.

Step 1 Update cluster assignment: Use DP to reassign all I subjects into different clusters. Subject
i will be assigned into one of the existing k clusters with some probability, or into one extra
cluster with the remaining probability, i = 1, 2, . . . , I, resulting in new cluster assignments
such that all I subjects are re-distributed into new k∗ clusters.

Step 2 Sampling unique parameters: Based on new assignments of all subjects, drawposterior sam-
ples of unique parameters θ i., i = 1, 2, . . . , k∗ (could be different from k). Information on
subjects in cluster i is used for sampling θ i., i = 1, 2, . . . k∗.

Step 3 Sampling common parameters: Draw posterior samples of common parameters.
Step 4 Nested variables clustering: Within each subject cluster i, i = 1, 2, . . . , k∗ concluded in Step

2, cluster variables as in Steps 1-3, but with subject index i replaced by variable index h.
Step 5 Repeat Steps 1-4: One full iteration is finished. Go back to step 1 to start the next iteration.


	1. Introduction
	2. Model Specification
	2.1. Model
	2.2. Nested joint clustering Scheme
	2.3. Parameter Priors
	2.3.1. Subject clustering
	2.3.2. Nested variable clustering

	2.4. Prior distributions for other parameters
	2.5. Joint and conditional posterior distributions

	3. Simulated Experiments
	4. Real data applications
	5. Summary
	Funding
	Disclosure statement
	References
	A.1. Derivations of conditional posterior probabilities for key parameters
	A.2. Overall sampling procedure


