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a b s t r a c t

Background noise in cluster analyses can potentially mask the true underlying patterns. To
tease out patterns uniquely to certain populations, a Bayesian semi-parametric clustering
method is presented. It infers and adjusts background noise. The method is built upon a
mixture of the Dirichlet process and a point mass function. Simulations demonstrate the
effectiveness of the proposedmethod. Themethod is then applied to analyze a longitudinal
data set on allergic sensitization and asthma status.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An underlying background pattern refers to a pattern shared by all subjects. In cluster analyses, existing methods do not
explicitly infer background patterns and adjust for their effects when identifying unique patterns. This work is motivated
by an epidemiological study examining allergic sensitization patterns longitudinally among subjects with different asthma
statuses.We are interested inwhether allergic sensitization to grass changes across different time points frompre-schoolers
to young adult (ages 4–18 years). If it does, what is the longitudinal pattern for each group of subjects? Of particular interest
is the unique patterns among subjects with diseases after adjusting for the background pattern, which is a temporal allergic
sensitization trend shared in the general population. A pattern after excluding the background is referred to as a unique
pattern. Unique patterns are important inmany applications, e.g., unique allergic sensitization patterns for different group of
subjects offer a potential to predict allergic disease risks. To identify patterns, cluster analyses aiming to detect the similarity
between subjects are commonly implemented. In general, all clustering methods are either non-parametric, e.g., the
K -means approach, or model-based (semi-) parametric approaches (Fraley and Raftery, 2002; Bigelow and Dunson, 2009;
Scott, 2009;Nieto-Barajas and Contreras-Cristan, 2014; Efron et al., 2001; Kimet al., 2006; Dunson et al., 2008). In this article,
we propose a model-based approach built upon Bayesian splines to infer longitudinal patterns of subjects in background
and unique clusters.

Mostmodel-basedmethods perform clustering based on themeans of a set of variables.Maximum likelihood approaches
have been used to detect the clusters and estimate the associations (Qin and Self, 2006). Bayesian methods have been
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developed for the purpose of automatic determination of the number of clusters and to take advantage of prior knowledge
on the potential associations. Our proposedmethod is formulated under this framework. To estimate the number of clusters
automatically, sampling strategies such as the reversible jump Markov Chain Monte Carlo (MCMC) method (Green, 1995)
and the birth–death process (Stephens, 2000) have been proposed. Dirichlet process (DP) (Ferguson, 1973), introduced as the
prior distribution for the coefficients evaluating the strength of associations, has been used more often recently to estimate
the number of clusters and infer the coefficients (Escobar and West, 1995; Caron et al., 2014; Zhang et al., 2012; Kim et al.,
2009).

There is a gap in the literature of clusteringmethods. Longitudinal data are commonnowadays andmeasures of clustering
variables may be further influenced by one or more external variables. Some existing clustering methods can be applied to
longitudinal data, but they do not infer temporal patterns or cannot explicitly describe temporal patterns in each cluster.
For instances, McNicholas andMurphy (2010) proposed a parametric approach to cluster overall means (i.e., to infer overall
mean µg for cluster g as noted in the article) instead of temporal patterns, where a modified Cholesky decomposition is
implemented to ease the process of clustering. A non-parametric approach, implemented in an R package kml (Genolini and
Falissard, 2011), uses the K -means method to perform the clustering such that subjects with similar profiles (i.e., means)
over time are grouped together. More importantly, these existing methods do not possess the feature of differentiating
unique patterns from background patterns. In this article, we develop an approach to cluster subjects that has the ability
to simultaneously identify background and unique temporal patterns. The method identifies clusters based on temporal
trends with background pattern adjusted. It has the potential to be easily modified to fit non-longitudinal data. The detailed
model specification, including model assumptions, parameter priors and posteriors are presented in Section 2. Numeric
studies including simulations and an application example are given in Section 3. Summary and discussions are included in
Section 4.

2. Model specification

2.1. Model

Let Yit denote a measure of response for subject i at time t with vector Yi = {Yi1, . . . , YiT } being the ith observation over
T time units and YI×T = {Y1, . . . , YI } denote all the observations. Assume Yi has a temporal pattern and is associated with
time invariant covariates Xi,

Yit = XT
i β0 + f1(ti; γ0, b0) + XT

i βi + f2(ti; γ i, bi) + si + ϵit , (1)

where f1(·) is an unknown function describing the temporal pattern applicable to all subjects (background pattern) and
f2(·) is for temporal pattern specific to subject i (with background adjusted), si represents subject random effects, and ϵit is
measurement error. Model (1) consists of two parts. The first part XT

i β0 + f1(ti; γ0, b0) describes the background pattern
common to all subjects and XT

i βi + f2(ti; γ i, bi) describes the trend specifically for subject i. Note that in the situation
of Xi being categorical, constraints on Xi are needed to avoid design matrix being singular. Assuming ϵit ∼ N(0, τ ) and
si ∼ N(0, σ 2

s ), the distribution of Yi satisfies a multivariate normal distribution

Yi|θ0, θi ∼ N(Mi, Σ), (2)

with Mi = Xiβ0 + f1(ti; γ0, b0) + Xiβi + f2(ti; γ i, bi) being a T × 1 vector, ti = (ti1, ti2, . . . , tiT ), Σ a T × T matrix with
σ 2
s +τ on the diagonal and off diagonal σ 2

s , θ0 = (β0, γ0, b0)
T denoting parameters in the background, and θi = (βi, γ i, bi)

T

being the collection of parameters unique to subject i. As seen in the construction of (1), θi is added onto θ0 and θi = 0 if
subject i does not have a unique temporal trend. Note that expression (2) collapses to a univariate distribution when there
is no repeated measures, i.e., T = 1.

We take Bayesian P-splines (Eilers and Marx, 1996; Baladandayuthapani et al., 2005) with order 2 for functions f1(·) and
f2(·) to estimate the unknown common and subject specific temporal trends. Specifically, we define

f1(ti, γ0, b0) = γ00 + γ01ti + γ02t2i +

N
j=1

b0j(ti − t∗ij )
2
+
,

f2(ti, γ i, bi) = γi0 + γi1ti + γi2t2i +

N
j=1

bij(ti − t∗ij )
2
+
,

(3)

where ti ∈ (ti1, ti2, . . . , tiT ), and (x)2
+

= x2I(x ≥ 0) and N is the number of knots. The knots can be chosen as equally spaced
points such that N ≪ T with t∗i1 < t∗i2 < · · · < t∗iN from the T time points.

2.2. Strategy of clustering and specification of prior distributions

The clustering of subjects and identification of background pattern are fulfilled by a careful design of the prior distribution
of θi. In the following, we focus on the discussion of prior distribution of θi and list the prior distributions for θ0 and other
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parameters at the end of this section. If subject i’s temporal pattern is as in the general population,we have θi = 0. If not, then
each subject has his/her own temporal trendwhich, in public health ormedical studies, is possibly related to amanifestation
of a disease, e.g., asthma. To this end and be flexible on the prior distribution of θi, we take the prior distribution of θi as a
mixture of distribution G1 and point mass δ(θi = 0),

θi|G1, ω ∼ ωG1 + (1 − ω)δ(θi = 0), (4)

with G1 generated from a Dirichlet Process (DP), G1 ∼ DP(α1,G01), where G01 is the base distribution and assumed to be
truncated multivariate normal G01 = TMVN(µ01, 601, a) with a being the distance from zero, and α1 a precision parameter
controlling the distance between G1 and G01. G1 is included for describing unique temporal trends and clustering subjects
with similar trends, while δ(·) is to put a subject into a group bearing a background pattern only. Parameter ω denotes the
probability that subject i has a unique temporal trend. Forcing ω = 1 reduces to a model for standard clustering in the
Bayesian framework and patterns in the background will not be adjusted. The parameter a is pre-specified indicating our
belief that θi is non-zero. In our application, we set a = 0.0001.

The mixture structure in (4) was motivated by the mixture of two normal distributions utilized in Bayesian variable
selection modeling (George andMcCulloch, 1997), which was later adapted to incorporate clustering into variable selection
with the involvement of DP (Dunson et al., 2008). In our application, however, this structure moved away from its
original variable selection functionality and, instead, is suited to model a situation of differentiating unique patterns from
background patterns in addition to clustering. Following the properties of DP, we have the following conditional prior
distribution for θi with (·) denoting all other parameters,

θi|θ
(i), (·) ∼ ω

1
I − 1 + α1


j≠i

δ(θj) + ω
α1

I − 1 + α1
TMVN(µ01, 601, a) + (1 − ω)δ(θi = 0). (5)

DP provides a non-parametric prior in the space of distribution functions and gives rise to a more flexible class of
distributions than would be obtained by parametric approaches. Furthermore, the inherent clustering property of samples
drawn from a distribution with DP prior ensures the formation of clusters among θi. Details of DP can be found in Ferguson
(1973), Escobar andWest (1995), Antoniak (1974), and among others. Taking this prior for θi, it assumes that, among subjects
not following the temporal trend in the general population (determined by θ0), there exist clusters of subjects such that
subjects in one cluster share a unique temporal pattern on average. The feature of this prior is beneficial to public health and
medical researchers due to the potential connection between temporal patterns and phenotypicmanifestation, e.g., different
temporal patterns of a phenotypemay be linked to different levels of diseasemanifestation, providing a potential for disease
prediction. To clarify, throughout the article, a ‘‘temporal pattern’’ refers to a ‘‘temporal trend’’ shared by a group of subjects.
The parameter α1 in G1 influences the degree of clustering of θi’s. There are various methods for selecting or estimating α1
(Escobar and West, 1995; Murugiah and Sweeting, 2012; Ritter and Tanner, 1992; Dorazio, 2009). However, most methods
are burdensome and suffer from insensitivity to underlying patterns. Instead, in this article, we choose α1 by optimizing
the deviance information criterion (DIC) (Gelman et al., 2003). Note that the recently raised concern on DIC is in terms of
over-fitting, which will not influence the selection of α1 (Spiegelhalter et al., 2014). In general, the larger the value of α1, the
more clusters will be generated. Thus, alternatively, if we do not expect a large number of patterns, then setting α1 relatively
small, e.g., α1 = 0.1, is acceptable in general.

We now discuss the hyper-prior distributions for parameters in (5), including µ01, 601, and ω. Parameters µ01 and 601
are in the base distribution G01 for θi. The prior distribution of µ01 is assumed to follow a multivariate normal distribution
with mean 0 and known large diagonal covariance matrix 6µ01 . Covariance matrix 601 is a diagonal matrix composed of
variance parameters corresponding to βi, γ i, and bi in θi (Section 2.1). We take inverse gamma (IG) with small and known
hyper-prior parameters as the prior distributions for each of its components. Specifically, for variances linked to βi, we have
σ 2
c ∼ IG(ασc , βσc ), c = 1, 2, . . . , C , assuming C covariates in total. For variance corresponding to γ i coefficients in the

P-spline, we have σ 2
c ∼ IG(ασc , βσc ), c = C + 1, . . . , C + 3, and finally for bi, since they represent the random part of

P-splines, we assume a constant variance across all bij’s, that is, σ 2
b ∼ IG(ασb , βσb). For the weight parameter ω, we assume

ω ∼ Beta(2, 2), which is symmetric and bell-shaped.
Finally, we present the prior distributions for parameters in θ0, τ , and σ 2

s . The prior distribution of θ0 is assumed to
be multivariate normal with mean 0 and covariance 6θ0, a known diagonal matrix with large components. The variance
component τ is assumed to follow an inverse gamma distribution, τ ∼ IG(α, β) with α and β known and chosen small. The
same prior distribution is assigned to σ 2

s .

2.3. Posterior distribution computing

The joint posterior distribution of all parameters, A = {θi, µ01, 601, ω, θ0, τ , σ 2
s }, is (up to a normalization constant),

P(A|Y ) ∝ p(Y |θi, θ0, τ , σ 2
s )p(θi|G1, ω)p(G1|G01, α1)p(µ01)p(601)p(ω)p(θ0)p(τ )p(σ 2

s ), (6)

where G01 = TMVN(µ01, 601, a).
Posterior inference of A is obtained by successively simulating values from their full conditional posterior distributions

through a Gibbs sampling scheme. We briefly discuss these distributions below and the detail of each conditional posterior
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distribution and its derivation are included in the Appendix. It can be derived that with ω = 1 the conditional posterior
distribution of θi is a Dirichlet process. In this case, we will use the Algorithm 8 in Neal (2000) to sample θi. In the Appendix,
we listed the conditional posterior distributions for θi needed for Algorithm 8 to update unique values of each cluster. For
the hyper-prior parameters,µ01, 601, in the base distribution G01, the conditional posterior distributionµ01 isN(µ, 1)with
µ = 1601

−1
i θi and 1 = (6µ01

−1
+ I601

−1)−1, and the conditional posterior distributions of the variance components
in 601 are still inverse gamma with updated shape and scale parameters,

σ 2
c |(·) ∼ IG


ασc +

I
2
, βσc +

1
2


i

(θic − µ01(c))2


,

σ 2
b |(·) ∼ IG


N


αb + 1 +
I
2


− 1, βbN +

1
2

C+3+N
c=C+3+1


i

(θic − µ01(c))2


,

where µ01(c) is the cth element of µ01, i = 1, 2, . . . , C + 3; c = C + 3 + 1, . . . , C + 3 + N .
For parameters in θ0, below is the conditional posterior distribution of β0.

β0|(·) ∼ N(µ, ∆), with

µ = ∆

I
i=1

X T
i 6−1Ri(β0),

∆ =


6β0

−1
+

I
i=1

X T
i 6−1Xi

−1

,

Ri(β0) = Yi − f (ti; γ0, b0) − Xiβi − f (ti; γ i, bi).

The conditional posterior distributions of γ0, b0 are in similar forms and included in the Appendix.
For the variance components τ and σ 2

s in the distribution of ϵ and si, respectively, their conditional posteriors are not
standard andwill be sampled using theMetropolis–Hastings (M–H) algorithm in theGibbs sampler. Their proposal functions
are both log-normal distributions with mean centered at the current posterior sample and variance selected to achieve
convergence efficiency. Similarly, for ω, we will use M–H algorithm as well and the proposal function will be uniform
centered at the current posterior sample with range selected to achieve convergence efficiency.

The number of clusters is inferred based on the ‘‘least-squares clustering’’ method proposed by Dahl (2006) and applied
in our recent work (Zhang et al., 2012). Basically, this method uses converged MCMC simulation samples to estimate a
probability matrix showing the probability of each pair of subjects being clustered together, and then chooses one specific
MCMC simulation sample such that the clustering pattern in that iteration is closest to the probability matrix in Euclidean
distance. In terms of MCMC simulations, it is noticed that model (1) is actually a linear mixed model and the coefficients
can be easily estimated using the R function lmer instead of going through conditional posterior sampling. To improve the
efficiency of MCMC, we introduce the idea of empirical Bayes (Efron et al., 2001) into the Gibbs sampling process in that at
each iteration of MCMC after we conclude the cluster assignment, we estimate the coefficient parameters via the R function
lmer, which gives maximum likelihood estimators. All the posterior sampling and results summary are programmed into R
and available to readers.

3. Numerical studies

3.1. Simulated experiments

Simulation scenarios: To evaluate the performance of the proposed clustering method, we consider various scenarios. Three
different sample sizes are used, I = 60, 100, 400, of which 50% subjects are in the background. Another 50% subjects are
equally assigned into 2 clusters. As for the unique temporal patterns added onto background (the pattern for θi), we consider
two settings. In the first setting, both patterns are linear but with different slopes; for cluster 1, f2(·) = −10 + 50t , and
cluster 2, f2(·) = 30 − 70t . In the second setting, we let one temporal trend be linear and the other be quadratic; cluster
1, f2(·) = −7 + 23t , and cluster 2, f2(·) = 15 + 50t − 10t2. For the background or the common temporal pattern in the
general population, we take a linear pattern, that is, f1(·) = −3 + 9t . The variances in random subject effects and random
errors, σ 2

s and τ , are taken as 0.25. One dimensional covariate Xi is included in the simulated data. In total, 100 Monte Carlo
(MC) replicates are considered for each scenario. To evaluate the method, for each MC replicate, we calculate the sensitivity
and specificity with respect to cluster and background identifications and summarize these two statistics across 100 MC
replicates using the means and standard deviations.
Results: For the precision parameter α1, as noted in Section 2.2, we determine it via grid search by minimizing DIC. Fast
convergence of the MCMC chains is observed in all of our simulation scenarios. Fig. 1 shows the trace plot of the two
scale parameters τ , σ 2

s as an illustration. Other parameters showed similar patterns of fast convergence. Thus, for each MC
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Fig. 1. Trace plots of two scale parameters τ = 0.25, σ 2
s = 0.25 with sample size I = 400 in setting 2.

Table 1
Summary of sensitivity and specificity across 100 MC replicates for varying sample sizes under setting 1. Sensitivity: probability of true
cluster or background assignment. Specificity: probability of true exclusion from a cluster or the background. SD stands for standard
deviation. 100∗ is the unbalanced case where 10 subjects are in cluster 1, 30 subjects are in cluster 2 and the rest 60 are in background. All
other cases have equal number of subjects in clusters 1 and 2.

Sample Size
60 100 100∗ 400

Background Sensitivity Mean 0.9997 1.0000 1.0000 1.0000
SD 0.0032 0.0000 0.0000 0.0000

Specificity Mean 1.0000 1.0000 1.0000 1.0000
SD 0.0000 0.0000 0.0000 0.0000

Cluster 1 Sensitivity Mean 0.9728 1.0000 0.9846 1.0000
SD 0.1351 0.0000 0.1083 0.0000

Specificity Mean 0.9903 0.9992 0.9876 0.9988
SD 0.0406 0.0031 0.0090 0.0017

Cluster 2 Sensitivity Mean 0.9745 0.9981 0.9604 0.9997
SD 0.0944 0.0084 0.0370 0.0017

Specificity Mean 0.9951 1.0000 1.0000 0.9894
SD 0.0267 0.0000 0.0000 0.0000

replicate, 1800 iterations were run for burn-in and additional 200 iterations were used to infer the parameters and clusters.
The posterior inferences are obtained from posterior samples of one chain after burn-in iterations.

For both scenarios, precision parameter α1 is chosen as 0.01 by minimizing DIC. Summary statistics of clustering quality
including sensitivity and specificity are displayed in Tables 1 and 2. Overall, a pattern of improvement in mean sensitivity
and specificity is observed for background, cluster 1, and cluster 2 as the sample size increases from 60 to 400 in both
scenarios, the variation (indicated by standard deviations) of both statistics decreases. We also notice that for the same
sample size, sensitivities and specificities in setting 1 are overall slightly better than those in setting 2. This is likely due to
the more complicated temporal trend in setting 2. The slightly larger variations when the sample size of 100 compared to
those with a sample size of 60 is likely due to the complexity of setting 2, sampling errors in the process of MC replicates
generations, and relatively closeness between the two sample sizes. Highermean sensitivities and specificities for samples of
100 indicate that most MC replicates result in high values in those two statistics, but someMC replicates produce relatively
lower sensitivities and specificities, which causes the larger variations. This type of uncertainty is clearly improved when
the sample size is increased from 100 to 400 as seen in Table 2.

We further assess the fitness of the estimated patterns to the true patterns. One hundredMC replicates eachwith sample
size 400 under setting 2 (two clusters onewith a linear pattern and the other a quadratic pattern) are used in this assessment.
Fig. 2 displays the average of fitted curves for the background and each cluster along with 95% empirical confidence bands,
based on 100 MC replicates. The variations of fitted curves are not clearly shown in Fig. 2 due to the wide range in f1(·) and
f2(·). To demonstrate the variations, Fig. 3 is a magnifier plot of distances from the fitted curve and the confidence bands to
the true curve, respectively, for the temporal pattern in cluster 1 in time interval (1, 2). When sample size is smaller, the
distances are larger but overall the true cluster patterns are well estimated even with a sample size of 60.
Comparisons with other methods: We compared the proposed method with two approaches. The first approach is a non-
parametric clustering method applied to longitudinal data and is implemented in an R package kml (Genolini and Falissard,
2011). It uses the K -means method for clustering such that subjects with similar profiles over time are grouped together.
We use data simulated under scenario 2 with sample sizes of 100 and 400 to compare the performance of the proposed
method and themethod in kml. The results are included in the parentheses of Table 3. Overall, regardless of the sample size,
sensitivities and specificities from the proposed method are higher than those from the non-parametric approach.
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Fig. 2. True temporal curves, fitted curves and 95% confidence bands over time across 100 replicates when sample size I = 400 in setting 2.

Fig. 3. Distance between fitted curves, confidence bands and the true curve (cluster 1 in time interval (1, 2) under setting 2 for I = 400). BanDis: distance
between empirical confidence bands and the true curve; FitDis: distance between the fitted curve and the true curve.

Table 2
Summary of sensitivity and specificity across 100 MC replicates for varying sample sizes under setting 2. SD stands for standard deviation.
100∗ is the unbalanced case where 10 subjects are in cluster 1, 30 subjects are in cluster 2 and the rest 60 are in background. All other cases
have equal number of subjects in clusters 1 and 2.

Sample Size
60 100 100∗ 400

Background Sensitivity Mean 1.0000 1.0000 0.9994 1.0000
SD 0.0000 0.0000 0.0039 0.0000

Specificity Mean 1.0000 1.0000 1.0000 1.0000
SD 0.0000 0.0000 0.0000 0.0000

Cluster 1 Sensitivity Mean 0.2737 0.7874 0.6084 1.0000
SD 0.0400 0.3237 0.3781 0.0000

Specificity Mean 0.7737 0.9394 0.9816 0.9997
SD 0.0400 0.1016 0.0179 0.0010

Cluster 2 Sensitivity Mean 0.5304 0.8421 0.8359 0.9991
SD 0.0278 0.2193 0.0819 0.0028

Specificity Mean 0.8484 0.9617 1.0000 1.0000
SD 0.0279 0.0685 0.0000 0.0000

The method in kml only performs cluster analyses and does not consider patterns in the background, which might be
the reason of inferior results. To further assess the advantage of accounting for background, we use the proposed method
but without adjusting for background, that is, we only perform cluster analyses. The 100 MC replicates generated under
scenario 2 with sample size of 400 are used in this comparison. The results are displayed in the last column of Table 3. Again,
both clustering sensitivity and specificity suffer from the absence of background adjustment. Observations from these two
comparisons demonstrate the need of adjusting for background patterns in order to improve the quality of unique clusters.
Further assessment: In all the above analyses, parameter a in themultivariate truncated normal distributionwas set at 0.0001.
Our further simulationswith larger values of a, e.g., a = 0.01, give results (not shown) comparable to those in Tables 1 and 2,
implying that the underlying unique clusters are potentially quite different from the background. We suggest the selection
of a rely on users’ belief in the strength of ‘‘signal’’ instead of imposing an arbitrary choice. If no background patterns are
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Table 3
Comparison between the proposed method and the method in kml in terms of sensitivity and specificity across 100 MC replicates and the
results without adjusting background under setting 2. SD stands for standard deviation. There are equal number of subjects in clusters 1
and 2, making one half number of subjects and the rest half are in background. Results from kml are included in parentheses.

Sample Size Proposed method (vs. kml) No adjustment
100 400 400

Background Sensitivity Mean 1.0000 (0.4358) 1.0000 (0.9350) 0.9990
SD 0.0000 (0.0783) 0.0000 (0.0711) 0.0028

Specificity Mean 1.0000 (0.9171) 1.0000 (0.9407) 0.9929
SD 0.0000 (0.0796) 0.0000 (0.0377) 0.0081

Cluster 1 Sensitivity Mean 0.7874 (0.7920) 1.0000 (0.9500) 0.7930
SD 0.3237 (0.1818) 0.0000 (0.0848) 0.2481

Specificity Mean 0.9394 (0.9440) 0.9997 (0.9851) 0.9878
SD 0.1016 (0.0466) 0.0010 (0.0237) 0.0103

Cluster 2 Sensitivity Mean 0.8421 (0.5896) 0.9991 (0.8855) 0.7937
SD 0.2193 (0.3548) 0.0028 (0.1538) 0.2380

Specificity Mean 0.9617 (0.9054) 1.0000 (0.9680) 0.9939
SD 0.0685 (0.0702) 0.0000 (0.0369) 0.0054

Table 4
Summary statistics of misclassification rates of subjects with partial missing time points over 100 MC
replicates in setting 2 with sample size of 400. SD stands for standard deviation.

10% missingness 20% missingness

Background Mean 0.0000 0.0050
SD 0.0000 0.0500

Cluster 1 Mean 0.0095 0.0125
SD 0.0221 0.0534

Cluster 2 Mean 0.0000 0.0000
SD 0.0000 0.0000

expected, then setting ω = 1 in the prior distribution of θi, expression (4), brings the method back to standard clustering in
the Bayesian framework. Besides the assessment in a, we further performed a set of sensitivity analyses, including sensitivity
with respect to unbalanced data, missingness, and signal-noise ratio.

It is known that many existing clustering methods prefer clusters with similar sizes (e.g., similar numbers of subjects
across different clusters). To assess whether the proposed approach is sensitive to unbalanced clusters, for I = 100, we
include 10 subjects in cluster 1, 30 subjects in cluster 2 and the remaining in background. Summary statistics of sensitivities
and specificities across 100MC replicates for settings 1 and 2 are in Tables 1 and 2 (the column indicated by 100∗). Compared
to the results from data with balanced clusters, the variations of sensitivities and specificities in this unbalanced situation
are slightly larger, but still quite small compared to the mean statistics.

To test the performance of the method on data set with missing values, we choose q% subjects from clusters 1 and 2
and background, respectively. For these selected subjects, samples at time points 1 and 3 are deleted. Then these data are
used to infer the patterns and perform cluster analyses. In this assessment, we use scenario 2 with sample size of 400, q
takes two values, q = 10, 20, and for each q, 100 MC replicates are simulated. A misclassification rate for those subjects
with missing values is recorded for each MC replicate, and the results are summarized in Table 4. Apparently, more subjects
with missing values lead to higher misclassification rates. However, even when 20% subjects with missing values, most of
these individuals are still correctly grouped together, which implies that the proposed method has the potential to handle
missingness as long as the percentage of subjects with missing data is small or moderate.

To assess how themethod performs for lower signal to noise ratios, we increased the ‘‘noise’’ (i.e., variance in the random
error) with ‘‘signal’’ (i.e., the pattern in the background and each unique cluster) intact. Two directions are considered in this
assessment. In the first direction, we increase the variance only in the background from τ = 0.25 to 1, and in the second
direction, we increase the variances both in the background and in the unique clusters from τ = 0.25 to 1. Other settings
are the same as in scenario 2. As before, 100 MC replicates each with a sample size of 400 are used in this assessment. The
results are summarized in Table 5 indicated as ‘‘Case 1’’ and ‘‘Case 2’’, where high sensitivities and specificities are observed
and are comparable to those in Table 2. Overall, these simulations demonstrate that the proposed method has the ability to
handle data that are unbalanced, with missing values, or with low signal-noise ratios.

3.2. Real data applications

We applied the proposed method to the motivating example to identify background and unique temporal patterns with
respect to wheal sizes in reaction to grass allergens. The information was collected in a birth cohort on the Isle of Wight in
the United Kingdom. Details of the cohort and related information on data collection can be found elsewhere (Arshad and
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Table 5
Sensitivity and specificity over 100 MC replicates in setting 2 with sample size of 400 in three additional
cases. SD stands for standard deviation. Case 1: Increased variance in background only, i.e. τ = 1; Case 2:
Increased variance in both background and two unique clusters, i.e., τ = 1.

Case 1 Case 2

Background Sensitivity Mean 1.0000 1.0000
SD 0.0000 0.0000

Specificity Mean 1.0000 1.0000
SD 0.0000 0.0000

Cluster 1 Sensitivity Mean 0.9833 0.9708
SD 0.1054 0.0144

Specificity Mean 0.9994 0.9923
SD 0.0015 0.0428

Cluster 2 Sensitivity Mean 0.9821 0.9730
SD 0.1053 0.1299

Specificity Mean 1.0000 1.0000
SD 0.0000 0.0000

Fig. 4. Varying distance with different unique clusters (i.e., background excluded) when α1 = 2.

Fig. 5. Inferred temporal patterns in background with 493 subjects and 2 unique clusters with the cluster 1 of 1 subject and cluster 2 of 130 subjects.

Hide, 1992). In this analysis, wheal sizes of 624 subjects in reaction to grass allergens at three time points (ages 4, 10, and
18) are included in the analyses.

We ran one but long MCMC chain than in simulations, in total, 9000 iterations with the first 6000 as burn-in. The next
2000 are used to estimate the probability matrix and the last 1000 iterations to infer the clusters and parameters. As in
simulations, the precision parameter is chosen via a grid search by minimizing DIC, and the inferences are made based on
MCMC samples corresponding to the selected precision parameter.

In this application, the precision parameter is selected as 2 which achieves the minimum DIC. Based on the last 1000
iterations, distances for different clusters are plotted (Fig. 4). The minimum distances at different numbers of clusters are
not far from each other, but overall minimumdistance across all possible cases is reached at 2 clusters (besides background).
Out of the 624 subjects, 493 subjects only have a background pattern, and the remaining 131 subjects are divided into two
clusters with one cluster of size 1 (Fig. 5). Although in general wheal size increases after the age of 4 years, the wheal size of
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Fig. 6. Inferred temporal patterns in background with 493 subjects and 4 unique clusters. There is 1 subject in cluster 1, 3 subjects are in cluster 2, 103
subjects in cluster 3 and the remaining 24 subjects are in cluster 4.

subjects in the two clusters increases much faster than in the background (and recall that the unique patterns in clusters are
added onto the background). Our closer observation at the clusters found that grouping of subjects into the background
is consistent across all three clustering efforts (2, 3, and 4 clusters); regardless of the numbers of unique patterns, the
background always includes the same 493 subjects. In terms of unique patterns, the clustering patterns in 3 clusters are
quite similar to the patterns in 2 clusters and the additional cluster only has 2 subjects. In the case of 4 clusters, although
the minimum Euclidean distance for 4 clusters is not the overall minimum across all clustering situations obtained, it is
not far from the overall minimum. A discussion with our collaborators in epidemiology and clinical studies indicated that
the patterns in the 4 clusters are of great interest. To further understand the clustering patterns clinically, we linked the 4
clusters (Fig. 6) to asthma status over time due to the close relationship between allergy and asthma (Soto-Ramirez et al.,
2013). Among all the 493 subjects with background pattern only, about 76% are asthma free. For subjects in cluster 3, 50%
suffered at least one time of asthma from ages 4 to 18, and about 20% of subjects had persistent asthma (i.e., asthma never
disappeared). For subjects in cluster 4, 37% had at least asthma once from ages 4 to 18, and around 10% had persistent
asthma. These findings are consistent with the wheal size temporal patterns, that is, faster increase of wheal size over time
(cluster 3) indicating more difficulty in recovering from asthma (i.e., asthma persists) and slowing increasing (cluster 4)
providing a hope of asthma curing in the future. For the two clusters with small cluster sizes (clusters 1 and 2), the wheal
sizes are large on average with cluster 2 having a much larger mean wheal size at each time point (Fig. 6). However, most
of these subjects (3 out of 4) are asthma free, which may deserve a further investigation. It is worth pointing out that since
the patterns in these 4 clusters are not associated with the minimum Euclidean distance, the interpretation of the 4 clusters
should be implemented with caution.

4. Summary and discussion

We proposed a semi-parametric method to cluster subjects based on their unique temporal patterns after adjusting for a
background pattern. P-splines are used to describe the temporal pattern in the background and also for subjects with unique
patterns. To differentiate between unique patterns and background patterns, we utilized a mixture of the Dirichlet process
and a point mass function to achieve this. The proposed method can be easily simplified to fit non-longitudinal data.

Different simulation scenarios were applied to demonstrate and assess the method in terms of its sensitivity and
specificity in cluster identification and pattern estimations. High sensitivity and specificity were observed across all
simulations. Our comparison with an existing non-parametric clustering approach for longitudinal data also demonstrated
the advantage of the proposed method and the need of taking background pattern into consideration. Besides this non-
parametric method, a parametric approach for clustering longitudinal data is available. It was proposed by McNicholas and
Murphy (2010). However, this approach may have a focus different from that in the proposed method. It clusters overall
means (i.e., to infer overall mean µg for cluster g as noted in the article) from longitudinal data, where a modified Cholesky
decomposition is implemented to ease the process of clustering. Their clustering approach cannot be directly applied to the
clustering of temporal patterns, and thus was not included in the comparisons.

Furthermore, in real data applications, the estimated unique temporal patterns in wheal sizes were sensible and
informative, which clearly linked allergic sensitization patterns to different diseases statuses over time. That is, a subject
with faster increase in wheal size over time is more likely to result in persistent asthma than a subject with slower increase.
This finding has the potential to assist clinicians to predict allergic diseases based on earlier allergic sensitization temporal
patterns and gives a potential to prevent the disease from occurring at an earlier stage. In this work, background is defined
as the largest cluster with most subjects. This definition is reasonable in the context of its application since more subjects
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are expected to be in the general population or background. Other definition of background can also be used and should be
guided by study questions.

In this study, the cluster analysis is designed for one variable and in the application, applied to one allergen, grass pollen.
It is possible that multiple allergens may behave similarly. The predictability will be improved if we can combine evidence
from different allergens. Thus, there is a need to cluster variables (e.g., allergens) in addition to clustering subjects. However,
the variables may be correlated, and taking correlations into account potentially increases the complexity of the modeling,
which warrants further investigations.
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Appendix. Derivations of conditional posterior probabilities

• The conditional posterior distribution of θ0.

P(θ0|(·)) ∝ exp

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1
2
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
× exp


−

1
2

I
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
,

where (·) denote data and all other variables, θ0 has three independent components, β0, γ0b0. Since 6θ0 is a diagonal
matrix, let6θ0 = diag{6β0 , 6γ0 , 6b0}, Ri(β0) = Yi− f (ti; γ0, b0)−Xiβi− f (ti; γ i, bi)with β0 excluded. In the following,
Ri(Φ) denotes an expression excluding parameter Φ . The conditional posterior of β0 is proportional to
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Therefore,

β0|(·) ∼ MN(µ, 1), with
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Similarly, the posterior probability of γ0 is proportional to
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Similarly,

b0j|(·) ∼ N
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where R(Φ)k is the kth element of R(Φ), and similar definition applied to Σ−1
kt .

• Following a similarway as in the derivation of conditional posterior distributions of θ0, conditional posterior distributions
for θi can be obtained. In the following, we list the conditional posterior distributions used to update the unique values
for θi’s in the DP conditional on ω = 1. As for βi,
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where Ri(βi) = Yi − Xiβ0 − f (ti; γ0, b0) − f (ti; γ i, bi).
For γ i,
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