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A B S T R A C T   

Objectives: The purpose of this study was to utilize a no-code computer vision platform to develop, train, and 
evaluate a model specifically designed for segmenting dental restorations on panoramic radiographs. 
Methods: One hundred anonymized panoramic radiographs were selected for this study. Accurate labeling of 
dental restorations was performed by calibrated dental faculty and students, with subsequent final review by an 
oral radiologist. The radiographs were automatically split within the platform into training (70 %), development 
(20 %), and testing (10 %) subgroups. The model was trained for 40 epochs using a medium model size. Data 
augmentation techniques available within the platform, namely horizontal and vertical flip, were utilized on the 
training set to improve the model’s predictions. Post-training, the model was tested for independent predictions. 
The model’s diagnostic validity was assessed through the calculation of sensitivity, specificity, accuracy, pre-
cision, F1-score by pixel and by tooth, and by ROC-AUC. 
Results: A total of 1,108 restorations were labeled on 960 teeth. At a confidence threshold of 0.95, the model 
achieved 86.64 % sensitivity, 99.78 % specificity, 99.63 % accuracy, 82.4 % precision and an F1-score of 0.844 
by pixel. The model achieved 98.34 % sensitivity, 98.13 % specificity, 98.21 % accuracy, 98.85 % precision and 
an F1-score of 0.98 by tooth. ROC curve showed high performance with an AUC of 0.978. 
Conclusions: The no-code computer vision platform used in this study accurately detected dental restorations on 
panoramic radiographs. However, further research and validation are required to evaluate the performance of 
no-code platforms on larger and more diverse datasets, as well as for other detection and segmentation tasks. 
Clinical significance: The advent of no-code computer vision holds significant promise in dentistry and dental 
research by eliminating the requirement for coding skills, democratizing access to artificial intelligence tools, and 
potentially revolutionizing dental diagnostics.   

1. Introduction 

Artificial Intelligence (AI) is the science of making computers 
perform tasks that conventionally require human intelligence [1]. AI has 
recently seen significant growth due to the availability of large digital 
datasets and rapid increase in computational power [2]. 

Machine Learning (ML) and Deep Learning (DL) are integral subsets 
of AI. ML involves creating algorithms that can automatically learn 
patterns and make decisions from data, often requiring human-designed 
feature extraction. On the other hand, DL is a specialized form of ML that 
enables machines to autonomously discover essential patterns and 

features for tasks like detection and classification [3]. DL employs 
multiple layers of non-linear modules to transform raw data into 
increasingly abstract representations, proving particularly effective in 
tasks such as image classification and segmentation [4]. 

The use of AI in dentistry is experiencing a surge in popularity, with 
the development of several platforms intended to facilitate the diagnosis 
of dental conditions and aid in treatment planning. Those platforms 
depend on the concepts of ML and DL which have numerous applications 
in oral radiology, including caries detection [5], bone loss detection [6], 
apical lesion detection [7], and root fracture [8]. Therefore, these tools 
are rapidly becoming indispensable instruments in the field of oral 
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health imaging, offering numerous opportunities for enhancing diag-
nostic precision, streamlining workflow, and improving patient care 
[9–12]. 

Deep learning in imaging involves three key tasks: segmentation, 
object detection and classification. Object detection defines rectangular 
Regions of Interest (ROIs) to locate objects of interest, while segmen-
tation essentially draws a clear distinction between the objects of in-
terest and the background through labeling precise pixels, hence 
separating objects from backgrounds. Object detection provides a rough 
location, while segmentation offers precise object delineation. These 
tasks are chosen based on the specific imaging application’s re-
quirements and complement each other in addressing different objec-
tives. Deep learning in imaging also encompasses a third crucial task: 
classification. DL systems can aid in both detection and classification, 
serving a twofold purpose. Firstly, they determine whether an image 
contains a lesion or anomaly, effectively flagging images that need 
expert evaluation. Secondly, these systems can classify or categorize the 
identified anomalies, providing insights into the most probable diag-
nosis [13]. 

Despite the increasing interest in this field, several factors hinder the 
effective deployment of DL models [14,15]. These challenges encompass 
the necessity of advanced DL knowledge and programming skills, 
dataset preparation requirements, significant computational demands, 
and intricate algorithms [16,17]. Furthermore, many of the concepts 
proposing the integration of DL in dentistry originate from dental re-
searchers, clinicians, or dentists, who often possess limited coding 
backgrounds. Consequently, the majority of end-users lack the oppor-
tunity to independently develop their ideas without substantial external 
assistance [18]. These complexities often result in the centralization of 
research and AI applications within a limited number of entities. This 
prevents a broader dissemination of AI-related applications and research 
opportunities [19]. 

No-code computer vision is among the latest breakthroughs in AI 
that have been developed to overcome the limited coding knowledge. 
This advancement empowers end-users to develop, train, and test their 
own AI models, without requiring them to possess extensive expertise in 
coding or software engineering [20]. No-code computer vision models 
are developed by annotating the spatial features of an object on multiple 
images to create an algorithm, without coding. Spatial features may 
consist of the relationships and arrangements of pixels in an image. 
Spatial features help users identify the object accurately, as well as its 
location and relation with other objects in an image. Subsequently, this 
automated algorithm can detect these features within new images, 
potentially streamlining the practical aspects of deploying, managing, 
monitoring, and sustaining ML models in real-world scenarios [21]. By 
adopting this approach, more professionals can gain the ability to 
harness the potential of machine learning for diverse applications [22, 
23]. 

No-code computer vision has been acknowledged in the literature by 
other names, such as; code-free machine learning [24], code-free deep 
learning [25], automated deep learning [26], and automated machine 
learning [27].The low-code computer vision term have also been re-
ported in the literature. However, unlike no-code platforms, low-code 
platforms involve some degree of coding but aim to minimize the 
amount of manual coding required [28].No-code computer vision has 
been applied and tested in the medical field in diagnosing a diverse 
range of diseases from medical imaging, including the detection of 
diabetic retinopathy and open-angle glaucoma using retinal images 
[18]. It resulted in comparable results to conventional trusted deep 
learning algorithms and ground truth. However, the authors are not 
aware of studies that have evaluated the utility of no-code computer 
vision models in the field of dentistry. 

This study aimed to develop, train, and evaluate a no-code model 
specifically designed for the segmentation of dental restorations on 
panoramic radiographs using a no-code computer vision platform. The 
null hypothesis was that the no-code AI model will not be able to 

differentiate between restorations and other structures on the pano-
ramic radiographs. 

2. Materials and methods 

Ethical approval from the Institutional Review Board (IRB# HR- 
4374) was obtained for this study. The study design followed the 
Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [29]. 

2.1. Sample selection 

To ensure the acquisition of a representative sample, a convenient 
consecutive sampling methodology was employed in this study. A total 
of 2500 anonymized panoramic radiographs, collected from the elec-
tronic adult patient records of dental school patients between January 
2018 and January 2023, were examined. Inclusion criteria specified that 
the radiographs must be of dentate or partially edentulous patients, aged 
18 and older, having a minimum of 8 remaining teeth, and showing at 
least one dental restoration. Exclusion criteria were applied to ensure 
that only diagnostically acceptable radiographs were included in the 
study cohort. This criterion encompassed radiographs featuring severe 
positional artifacts, orthognathic surgery, plates, screws, lead apron 
artifact and radiographs depicting severe malocclusion. The first 100 
consecutive radiographs that adhered to both the inclusion and exclu-
sion criteria were selected for this study. 

2.2. No-code AI platform 

For this task, we used LandingLens (Landing AI, Palo Alto, CA, USA) 
[26] as an example of a no-code platform. We selected this platform as it 
offered an automated way to split the images, several labeling tools and 
augmentation techniques. Another advantage is that it is cloud-based, 
eliminating the need for setting up or managing our own infrastruc-
ture. The workflow for users to create a model are as follows:  

a) Users can create a new project by selecting the specific task they need 
(i.e., object detection, segmentation, or classification). The user then 
uploads a dataset of images to the web-based platform.  

b) There are several labeling tools such as bounding box, brush and 
semiautomatic annotation tools depending on the selected task.  

c) After labeling the dataset and assigning classes for the labels, the 
images are divided into training, validation, and testing subsets. 
Users can choose whether to have the platform automatically split 
“auto-split” the images based on a preselected percentage or to 
manually assign them to each subgroup.  

d) Prior to selecting the “train” option to train the model, the user can 
customize the training settings by selecting data augmentation 
techniques like horizontal and vertical flip to enhance the diversity 
of the training sample. A user can also set the number of epochs.  

e) Finally, automated training proceeds resulting in the development of 
a computer vision model which can then be used to further make 
predictions and fine-tuned, before being deployed upon showing 
satisfactory results. 

2.3. Data labeling and ground truth 

The radiographs were uploaded to LandingLens. Following a 
comprehensive calibration conducted by an oral radiologist, a group 
consisting of two radiology faculty members and three skilled students 
diligently performed the labeling of dental restorations. Each annotator 
labeled dental restorations on 20 radiographs using the brush and 
semiautomatic “smart” labeling tools (Fig. 1). The group labeled all 
types of opaque coronal restorations, crowns, gutta-percha, silverpoints, 
and posts. The labels underwent a final review by an oral and maxillo-
facial radiologist with three years of experience. The final decision 
regarding the presence and absence of dental restorations on the 
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panoramic radiographs was determined by the oral and maxillofacial 
radiologist. For validation purposes, we randomly chose 20 panoramic 
radiographs, and rated all teeth in each panoramic image by the oral and 
maxillofacial radiologist and the five other independent raters using 1 
(restoration) or 0 (no restoration). Cohen’s Kappa was calculated be-
tween the radiologist and the five other raters across all teeth within one 
patient and averaged them as kappa for that individual. Finally, the 
average kappa was calculated across all 20 patients, as 0.97 indicating 
almost perfect agreement, with p value less than 0.1 %. The labeled data 
was used as ground truth to develop, train and test the no-code computer 
vision model. 

2.4. Developing the no-code computer vision model 

The labeled radiographs were automatically and randomly split into 
a training (70 %), validation (20 %), and testing (10 %) sets using the 
auto-split feature within LandingLens’s platform. Once the samples were 
divided into these three groups, augmentation was exclusively applied 
to the training data to enhance diversity for the models to learn from. 
The validation and testing sets remained unaugmented to ensure accu-
rate model tuning and evaluation on images representative of real-life 
panoramic images. The model was trained for 40 epochs using a 
medium-sized model, with the data augmentation parameters preset at a 
horizontal flip probability of 0.5 and a vertical flip probability of 0.5. 
Following the training phase, the model underwent testing to make 
standalone predictions. (Fig. 2). 

2.5. Testing the validity of the no-code computer vision model 

The model predictions were compared to the labeled ground truth 
(Fig. 2) initially at the pixel level, and subsequently, on tooth level basis. 
The pixels and teeth predations were classified into; true positive (TP), 
false positive (FP), false negative (FN), and true negative (TN). The 
model’s validity was measured through the calculation of sensitivity, 
specificity, accuracy, precision, and F1-score. 

In addition, the model’s ability to detect the presence of restorations 
on panoramic radiographs was evaluated by the computation of a 
receiver operating characteristic (ROC) curve and measuring the area 
under the curve (AUC). 

3. Results 

The panoramic radiographs comprised a total of 66,827,000 pixels. 
Within this data set, there were 745,545 labeled pixels, indicating the 
presence of restorative material, and 66,081,455 unlabeled pixels, 
indicating the absence of restorative material. The cumulative number 
of teeth shown in these radiographs was 2601 in total. On 960 of these 
teeth, 1108 restorations were identified, while the remaining 1641 teeth 
were not restored. 

The TP, FP, FN, and TN metrics by pixel are shown in the confusion 
matrix (Fig. 3). At a confidence threshold of 0.95, the model achieved a 
sensitivity of 86.64 %. In addition, the model achieved specificity of 
99.78 %. The model also achieved an accuracy of 99.63 %. Moreover, 
the model exhibited a precision of 82.4 % and an F1-score of 0.844. 

The TP, FP, FN, and TN metrics by tooth are shown in the confusion 

Fig. 1. Data labeling using LandingLens tools. A. Before labeling. B. After labeling. The brush tool was used to label the dental restorations on the panoramic 
radiographs. 

Fig. 2. A. Ground truth. B. Model’s prediction. This figure displays mild discrepancies in between the ground truth and model’s predictions. The predicted resto-
ration edges show false positive and negative pixels influencing the overall model’s accuracy. 
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matrix (Fig. 4). At a confidence threshold of 0.95, the model achieved a 
sensitivity of 98.34 % and a specificity of 98.13 %. The model also 
achieved an accuracy of 98.21 %. Moreover, the model exhibited a 
precision of 98.85 % and an F1-score of 0.98. The ROC curve for the 
model is shown in Fig. 5. The model achieved an AUC of 0.978 (n = 100; 
95 % CI, 0.959–0.998). Type I and II errors are outlined in Table 1. 

4. Discussion 

Today, there is a growing interest in no-code deep learning plat-
forms. The primary purpose of these platforms is to facilitate the 
participation of individuals, such as scientists, radiologists, and clini-
cians, who do not possess coding proficiency, in the development of 
deep learning models. Consequently, this may have the potential to 
enhance the adoption of deep learning in healthcare [30]. This study 
aimed to develop, train, and evaluate a model specifically designed for 
the detection of dental restorations on panoramic radiographs using a 
no-code computer vision platform called LandingLens [31]. 

The null hypothesis was rejected. As the present study demonstrated 
the high performance of the no-code AI model, designed for the detec-
tion of dental restorations in panoramic radiographs, achieving a 
sensitivity of 86.64 %, specificity of 99.78 %, accuracy of 99.63 %, 
precision of 82.4 %, F1-score 0.844 by pixel, and, achieved a sensitivity 
of 98.34 %, specificity of 98.13 %%, accuracy of 98.21 %, precision of 
98.85 % and an F1-score of 0.98 by tooth. These metrics indicate the 
model’s accurate detection of dental restorations in a limited set of 
panoramic radiographs. Additionally, the model achieved an AUC of 
0.978, indicating that the model was frequently able to precisely identify 
the presence and location of dental restorations on panoramic 
radiographs. 

The elevated specificity and accuracy in pixel-level detection can be 

explained by the abundant true negative (TN) pixels present in pano-
ramic radiographs, largely due to the prevalence of non-tooth structures 
on this type of radiographic modality. Conversely, the elevated scores in 
sensitivity, precision, and F1-score observed in tooth-level detection can 
be attributed to the broader context provided by analyzing the presence 
or absence of restoration on an entire tooth, as opposed to scrutinizing 
smaller individual pixels [32]. 

Nevertheless, the model encountered some difficulties in precisely 
delineating restoration margins, as evidenced by the presence of false 
positive and false negative pixels surrounding the predicted restorations 
(Fig. 6). These difficulties may stem from the similarity in radiographic 
features between sound and restored enamel and dentin. The model also 
exhibited both Type I (FP) and Type II (FN) errors. FP errors were pri-
marily associated with high-density occlusal enamel, teeth overlap, and 
mid-root surface. This finding could be attributed to the similar pixel 
values compared to dental restorations. In contrast, FN errors were most 
commonly associated with resin composite restorations and the pres-
ence of gutta percha that exabit low pixel values, resembling normal 
tooth structure. 

Several studies have evaluated the segmentation capabilities of deep 
learning models for detecting various structures in panoramic radio-
graphs. Lee et al. [33] developed a mask-RCNN model to segment teeth 
on panoramic radiographs, achieving an F1-score of 0.875. Another 
study by Dayi et al. [34] focused on the automated segmentation of 
carious lesions and reported a mean F1-score of 0.628. This suggests the 
challenges associated with accurately segmenting small dental findings 
in panoramic radiographs. 

In the context of dental restorations, various studies have delved into 
the use of coded deep learning and machine learning models for 
detecting dental restorations on panoramic radiographs. For instance, 
Celik et al. employed 10 different deep-learning models in their 
computer-aided systems, achieving precision and recall between 
75.5− 97.3 % and 60.5− 77.1 %, respectively [35]. Asci et al. and Yeshua 
et al. obtained results with sensitivities of 95.7 % and 95 %, respectively, 
with notable errors related to root-canal fillings and dental implants [36, 
37]. Top et al.’s evaluation of five CNN algorithms produced accuracies 
ranging from 75.5 % to92.7 % with a high AUC of 0.989 [38], while 

Fig. 3. Confusion matrix of the model’s performance on pixel level.  

Fig. 4. Confusion matrix of the model’s performance on tooth level.  

Fig. 5. ROC curve for the model’s predictions of dental restorations on pano-
ramic radiographs. 

Table 1 
Location and frequency of errors.  

Type of error Total Location Frequency 

Type I - False positive 31 High-density occlusal enamel 16 
Teeth overlap 12 
Mid-root surface 3 

Type II - False negative 16 Resin Composite 13 
Gutta percha 3  

M. Hamdan et al.                                                                                                                                                                                                                               



Journal of Dentistry 139 (2023) 104768

5

Rohrer et al.’s approach of cropping radiographs improved F1 scores 
from 0.7 to 0.95 [39]. Choi et al.’s model, aimed at detecting natural 
teeth and dental treatments, reached precision values up to 99.1 % but 
faced challenges with dental fillings and root canal treatments [40]. 
Similarly, Abdalla-Aslan et al.’s model detected 94.6 % of restorations 
with an accuracy of 93.6 %, primarily struggling with composite and 
root canal fillings [41]. Lastly, Gardiyanoğlu et al. achieved an F1-score 
of 0.87 and an impressive accuracy of 99 % in segmenting dental res-
torations. Despite their larger dataset of over 8000 panoramic radio-
graphs compared to our 100, they too found the lowest scores associated 
with root canal fillings [42]. 

The results of the aforementioned studies show that various 
conventionally coded models displayed varying results in detecting 
dental restoration on panoramic radiographs. Also, a recurring obser-
vation is the prevalence of false negative errors in AI models, particu-
larly in relation to resin composite fillings and root canal fillings. This 
observation is consistent with the findings of our study. It can be 
concluded that no-code platform was able to match or exceed the per-
formance of a customized model developed with extensive machine 
learning expertise. Being able to achieve robust performance with less 
data is highly advantageous, as curating large labeled datasets is one of 

the major challenges in healthcare AI development. The high accuracy 
of the tested model in our paper can be attributed to several factors, such 
as the choice of data augmentation, differences in labeling and in the 
code-free model architecture used in the platform as well as data pre-
processing and model optimization. No-code or low-code computer 
vision platforms may effectively address the challenges tied to profound 
machine learning knowledge, expensive training, and operational 
adeptness. Consequently, no-code AI platforms offer numerous advan-
tages compared to conventional machine learning. These benefits 
encompass their intuitive nature and the lack of requirement for 
extensive programming skills. Additionally, no-code computer vision 
platforms can be deployed more swiftly and easily than traditional 
machine learning methods. Lastly, findings indicate that these platforms 
can enhance the precision of dental image segmentation through deep 
learning, outperforming conventional programming methods [35,42]. 
To the best of our knowledge, this is the first study to use a no-code 
platform for developing deep learning models in the field of dentistry. 
Also limited number of studies evaluated the performance for this 
approach, especially in case of segmentation task. Successful use of these 
platforms in medical image classification has already been shown in 
various recent studies [18,24,43,44]. 

Fig. 6. A. Ground truth. B. Model’s predictions. This figure shows two examples of false positive pixels in sites #12 and #19. False positives were mainly associated 
with the detection of root canal filling material. 
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Santomartino et al. [43] reported that their segmentation model 
faced challenges stemming from the limitations of no-code platforms. 
These limitations included the incapacity to handle large dataset sizes, 
an inability to perform multi-label disease classification, and a restric-
tion on using negative images for training. Consequently, they were 
unable to achieve successful training of their segmentation model. These 
identified limitations may be linked to different types of no-code plat-
forms that were not evaluated in the present study. However, they re-
ported that in the context of smaller, balanced and datasets, no-code 
deep learning platforms demonstrated exceptional performance in 
single-label, binary classification tasks. On the other hand, Pettersen 
et al. [45] reported successful use of a no-code pipeline for the seg-
mentation of histopathologic images, reaching dice similarity coefficient 
of more than 91 % for all the classes. These varying outcomes in different 
studies might be due to the usage of different platforms for creating deep 
learning models. 

While the study demonstrates the potential of no-code computer 
vision platforms in radiology, there are limitations that warrant further 
investigation. For instance, they don’t support cross-validation and 
ensembling, and their model customization options can be limited [43]. 
Furthermore, this study had several limitations. We worked with a 
limited dataset size. Additionally, all analyses relied on a single radio-
graphic device, removing variability in intrinsic image properties. 
Moreover, the generalizability is potentially constrained by the specific 
age range of our participants and the omission of other dental condi-
tions, such as dental crowding, mixed dentition, and orthodontic ap-
pliances, from the dataset. In addition, our research focus was solely on 
one task: the detection of dental restorations on panoramic radiographs 
using one no-code computer vision platform. Considering all of these 
factors, future research should continue by focusing on validating the 
performance of multiple no-code computer vision platforms on larger 
and more diverse datasets. This can encompass other deep learning tasks 
in dentistry, including classification, object detection, and more com-
plex segmentation tasks. 

It’s essential to highlight that the computer vision platforms devel-
oped using this method should not be used for diagnostic purposes i.e., 
as medical devices, without obtaining FDA clearance. Moreover, while 
the convenience of adopting technology is apparent, there’s a re-
sponsibility to thoroughly understand it, including its benefits and po-
tential limitations. Many AI algorithms operate as "black boxes," 
concealing their internal workings, and perpetuating this lack of trans-
parency carries risks. In essence, caution is necessary when applying AI 
in critical areas like healthcare [46,47]. 

5. Conclusion 

In conclusion, this study highlights the potential of no-code com-
puter vision platforms in dental radiology, particularly for segmenting 
dental restorations on panoramic radiographs. The model’s performance 
metrics indicate its accurate segmenting capabilities, which can 
contribute to advancements in dental imaging and patient care. How-
ever, further research and validation are required to evaluate the per-
formance of these platforms for other detection tasks in oral radiology. 
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Snflandrlmas: metodolojik Çalşmalar, Turkiye Klinikleri. Dishekimligi Bilimleri 
Dergisi. 28 (2022) 329–337. 

[37] T. Yeshua, Y. Mandelbaum, R. Abdalla-Aslan, C. Nadler, L. Cohen, L. Zemour, 
D. Kabla, O. Gleisner, I. Leichter, Automatic detection and classification of dental 
restorations in panoramic radiographs, Issues Informing Sci. Inf. Technol. 16 
(2019) 221–234. 
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